[Estimations à l'aide des polynômes de Faber des coefficients de certaines fonctions méromorphes bi-univalentes]
Utilisant les développements des coefficients en termes de polynômes de Faber, nous obtenons des estimations du coefficient général des éléments d'une classe de fonctions méromorphes bi-univalentes. Nous étudions aussi les bornes pour leurs coefficients initiaux. Les bornes présentées ici sont nouvelles dans leur genre.
Making use of the Faber polynomial coefficient expansions to a class of meromorphic bi-univalent functions, we obtain the general coefficient estimates for such functions and study their initial coefficient bounds. The coefficient bounds presented here are new in their own kind.
Accepté le :
Publié le :
Serap Bulut 1 ; Nanjundan Magesh 2 ; Vittalrao Kupparao Balaji 3
@article{CRMATH_2015__353_2_113_0, author = {Serap Bulut and Nanjundan Magesh and Vittalrao Kupparao Balaji}, title = {Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {113--116}, publisher = {Elsevier}, volume = {353}, number = {2}, year = {2015}, doi = {10.1016/j.crma.2014.10.019}, language = {en}, }
TY - JOUR AU - Serap Bulut AU - Nanjundan Magesh AU - Vittalrao Kupparao Balaji TI - Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions JO - Comptes Rendus. Mathématique PY - 2015 SP - 113 EP - 116 VL - 353 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2014.10.019 LA - en ID - CRMATH_2015__353_2_113_0 ER -
%0 Journal Article %A Serap Bulut %A Nanjundan Magesh %A Vittalrao Kupparao Balaji %T Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions %J Comptes Rendus. Mathématique %D 2015 %P 113-116 %V 353 %N 2 %I Elsevier %R 10.1016/j.crma.2014.10.019 %G en %F CRMATH_2015__353_2_113_0
Serap Bulut; Nanjundan Magesh; Vittalrao Kupparao Balaji. Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions. Comptes Rendus. Mathématique, Volume 353 (2015) no. 2, pp. 113-116. doi : 10.1016/j.crma.2014.10.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.10.019/
[1] Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222
[2] An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367
[3] Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., Volume 25 (2012) no. 3, pp. 344-351
[4] On some classes of bi-univalent functions, Stud. Univ. Babeş–Bolyai, Math., Volume 31 (1986) no. 2, pp. 70-77
[5] Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., Volume 43 (2013) no. 2, pp. 59-65
[6] Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 6, pp. 479-484
[7] Coefficient bounds for new subclasses of bi-univalent functions, Filomat, Volume 27 (2013) no. 7, pp. 1165-1171
[8] Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983
[9] Über polynomische Entwickelungen, Math. Ann., Volume 57 (1903) no. 3, pp. 389-408
[10] New subclasses of bi-univalent functions, Appl. Math. Lett., Volume 24 (2011) no. 9, pp. 1569-1573
[11] The Bieberbach Conjecture, AMS/IP Studies in Advanced Mathematics, vol. 12, Amer. Math. Soc., Providence, RI, USA, 1999 (translated from the 1989 Chinese original and revised by the author)
[12] Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 9–10, pp. 349-352
[13] Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci., Volume 2013 (2013) (Art. ID 498159, 4 p)
[14] On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68
[15] Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann., Volume 89 (1923) no. 1–2, pp. 103-121
[16] The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in , Arch. Ration. Mech. Anal., Volume 32 (1969), pp. 100-112
[17] H. Orhan, N. Magesh, V.K. Balaji, Initial coefficient bounds for certain classes of meromorphic bi-univalent functions, preprint.
[18] Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, Volume 27 (2013) no. 5, pp. 831-842
[19] Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010) no. 10, pp. 1188-1192
[20] On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991) no. 1, pp. 268-276
Cité par Sources :
Commentaires - Politique