Comptes Rendus
Functional analysis
Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper half-plane and very slowly oscillating functions
Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 129-132.

Extending a recent result of Herrera Yañez, Maximenko and Vasilevski, we provide a further step in the structural analysis of algebras generated by Toeplitz operators on weighted Bergman spaces over the upper half-plane. We show that the set of “spectral” functions corresponding to Toeplitz operators generated by bounded vertical symbols is dense in the C-algebra of very slowly oscillating functions on the positive half-line.

En étendant le résultat récent de Herrera Yañez, Maximenko et Vasilevski, nous allons proposer une nouvelle étape dans lʼanalyse structurelle des algèbres générées par les opérateurs de Toeplitz agissant sur les espaces pondérés de Bergman sur le demi-plan supérieur. Nous allons montrer que lʼensemble des fonctions « spectrales » correspondant aux opérateurs de Toeplitz à symboles bornés verticaux est dense dans la C-algèbre des fonctions à oscillation très lente sur la demi-droite positive.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.12.004

Crispin Herrera Yañez 1; Ondrej Hutník 2; Egor A. Maximenko 3

1 Departamento de Matemáticas, CINVESTAV, Apartado Postal 14-740, 07000, D.F. México, Mexico
2 Institute of Mathematics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 040 01 Košice, Slovakia
3 Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, 07730, D.F. México, Mexico
@article{CRMATH_2014__352_2_129_0,
     author = {Crispin Herrera Ya\~nez and Ondrej Hutn{\'\i}k and Egor A. Maximenko},
     title = {Vertical symbols, {Toeplitz} operators on weighted {Bergman} spaces over the upper half-plane and very slowly oscillating functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {129--132},
     publisher = {Elsevier},
     volume = {352},
     number = {2},
     year = {2014},
     doi = {10.1016/j.crma.2013.12.004},
     language = {en},
}
TY  - JOUR
AU  - Crispin Herrera Yañez
AU  - Ondrej Hutník
AU  - Egor A. Maximenko
TI  - Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper half-plane and very slowly oscillating functions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 129
EP  - 132
VL  - 352
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2013.12.004
LA  - en
ID  - CRMATH_2014__352_2_129_0
ER  - 
%0 Journal Article
%A Crispin Herrera Yañez
%A Ondrej Hutník
%A Egor A. Maximenko
%T Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper half-plane and very slowly oscillating functions
%J Comptes Rendus. Mathématique
%D 2014
%P 129-132
%V 352
%N 2
%I Elsevier
%R 10.1016/j.crma.2013.12.004
%G en
%F CRMATH_2014__352_2_129_0
Crispin Herrera Yañez; Ondrej Hutník; Egor A. Maximenko. Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper half-plane and very slowly oscillating functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 129-132. doi : 10.1016/j.crma.2013.12.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.12.004/

[1] S. Grudsky; A. Karapetyants; N. Vasilevski Dynamics of properties of Toeplitz operators on the upper half-plane: Parabolic case, J. Oper. Theory, Volume 52 (2004), pp. 185-204

[2] C. Herrera Yañez; E.A. Maximenko; N.L. Vasilevski Vertical Toeplitz operators on the upper half-plane and very slowly oscillating functions, Integral Equ. Oper. Theory, Volume 77 (2013), pp. 149-166

[3] O. Hutník; M. Hutníková Toeplitz operators on poly-analytic spaces via time-scale analysis, Oper. Matrices (2013) (in press)

[4] D. Suárez The eigenvalues of limits of radial Toeplitz operators, Bull. Lond. Math. Soc., Volume 40 (2008), pp. 631-641

[5] N.L. Vasilevski On Bergman–Toeplitz operators with commutative symbol algebras, Integral Equ. Oper. Theory, Volume 34 (1999), pp. 107-126

[6] N.L. Vasilevski Commutative Algebras of Toeplitz Operators on the Bergman Space, Operator Theory: Advances and Applications, vol. 185, Birkhäuser, Basel, 2008

Cited by Sources:

Comments - Policy