Comptes Rendus
Partial differential equations
Finite and infinite speed of propagation for porous medium equations with fractional pressure
Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 123-128.

We study a porous medium equation with fractional potential pressure:

tu=(um1p),p=(Δ)su,
for m>1, 0<s<1 and u(x,t)0. To be specific, the problem is posed for xRN, N1, and t>0. The initial data u(x,0) is assumed to be a bounded function with compact support or fast decay at infinity. We establish the existence of a class of weak solutions for which we determine whether, depending on the parameter m, the property of compact support is conserved in time or not, starting from the result of finite propagation known for m=2. We find that when m[1,2) the problem has infinite speed of propagation, while for m[2,) it has finite speed of propagation. Comparison is made with other nonlinear diffusion models where the results are widely different.

Nous étudions une équation du milieu poreux avec une pression potentielle fractionnaire : tu=(um1p), p=(Δ)su, pour m>1, 0<s<1 et u(x,t)0. Le problème se pose pour xRN, N1 et t>0. La donnée initiale est supposée bornée avec support compact ou décroissance rapide à lʼinfini. Lorsque le paramètre m est variable, on obtient deux comportements différents comme suit : si m[1,2), le problème a une vitesse de propagation infinie, alors que pour m[2,), elle a une vitesse de propagation finie. On compare le résultat avec les comportements dʼautres modèles de diffusion non linéaire, qui sont très différents.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.12.003

Diana Stan 1; Félix del Teso 1; Juan Luis Vázquez 1

1 Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
@article{CRMATH_2014__352_2_123_0,
     author = {Diana Stan and F\'elix del Teso and Juan Luis V\'azquez},
     title = {Finite and infinite speed of propagation for porous medium equations with fractional pressure},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {123--128},
     publisher = {Elsevier},
     volume = {352},
     number = {2},
     year = {2014},
     doi = {10.1016/j.crma.2013.12.003},
     language = {en},
}
TY  - JOUR
AU  - Diana Stan
AU  - Félix del Teso
AU  - Juan Luis Vázquez
TI  - Finite and infinite speed of propagation for porous medium equations with fractional pressure
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 123
EP  - 128
VL  - 352
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2013.12.003
LA  - en
ID  - CRMATH_2014__352_2_123_0
ER  - 
%0 Journal Article
%A Diana Stan
%A Félix del Teso
%A Juan Luis Vázquez
%T Finite and infinite speed of propagation for porous medium equations with fractional pressure
%J Comptes Rendus. Mathématique
%D 2014
%P 123-128
%V 352
%N 2
%I Elsevier
%R 10.1016/j.crma.2013.12.003
%G en
%F CRMATH_2014__352_2_123_0
Diana Stan; Félix del Teso; Juan Luis Vázquez. Finite and infinite speed of propagation for porous medium equations with fractional pressure. Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 123-128. doi : 10.1016/j.crma.2013.12.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.12.003/

[1] P. Biler; C. Imbert; G. Karch Barenblatt profiles for a nonlocal porous medium equation, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 11–12, pp. 641-645

[2] P. Biler; C. Imbert; G. Karch Nonlocal porous medium equation: Barenblatt profiles and other weak solutions, 2013 | arXiv

[3] P. Biler; G. Karch; R. Monneau Nonlinear diffusion of dislocation density and self-similar solutions, Commun. Math. Phys., Volume 294 (2010) no. 1, pp. 145-168

[4] L. Caffarelli; J.L. Vázquez Nonlinear porous medium flow with fractional potential pressure, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 537-565

[5] L. Caffarelli; J.L. Vázquez Asymptotic behaviour of a porous medium equation with fractional diffusion, Discrete Contin. Dyn. Syst., Volume 29 (2011) no. 4, pp. 1393-1404

[6] L. Caffarelli; F. Soria; J.L. Vázquez Regularity of solutions of the fractional porous medium flow, J. Eur. Math. Soc., Volume 15 (2013) no. 5, pp. 1701-1746

[7] X. Cabré; J.M. Roquejoffre Front propagation in Fisher–KPP equations with fractional diffusion, Commun. Math. Phys., Volume 320 (2013) no. 3, pp. 679-722

[8] M. Crandall; H. Ishii; P.L. Lions Userʼs guide to viscosity solutions of second order partial differential equations, Bull., New Ser., Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67

[9] A. De Pablo; F. Quirós; A. Rodriguez; J.L. Vázquez A fractional porous medium equation, Adv. Math., Volume 226 (2011) no. 2, pp. 1378-1409

[10] A. De Pablo; F. Quirós; A. Rodriguez; J.L. Vázquez A general fractional porous medium equation, Commun. Pure Appl. Math., Volume 65 (2012), pp. 1242-1284 | arXiv

[11] G. Giacomin; J.L. Lebowitz; E. Presutti Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems, Stochastic Partial Differential Equations: Six Perspectives, Math. Surveys Monogr., vol. 64, American Mathematical Society, Providence, RI, 1999, pp. 107-152

[12] A.K. Head Dislocation group dynamics III. Similarity solutions of the continuum approximation, Philos. Mag., Volume 26 (1972) no. 1, pp. 65-72

[13] Y. Huang, Explicit Barenblatt profiles for fractional porous medium equations, in preparation.

[14] C. Imbert; R. Monneau; E. Rouy Homogenization of first-order equations with (u/e)-periodic Hamiltonians. II. Application to dislocations dynamics, Commun. Partial Differ. Equ., Volume 33 (2008) no. 1–3, pp. 479-516

[15] E.R. Jakobsen; K.H. Karlsen A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations, Nonlinear Differ. Equ. Appl., Volume 13 (2006), pp. 137-165

[16] D. Stan; J.L. Vázquez The Fisher–KPP equation with nonlinear fractional diffusion, 2013 (to appear in SIAM J. Math. Anal) | arXiv

[17] D. Stan, F. del Teso, J.L. Vázquez, Finite speed of propagation for degenerate parabolic equations with fractional pressure, in preparation.

[18] F. del Teso Finite difference method for a fractional porous medium equation (Calcolo, December 2013) | arXiv

[19] F. del Teso; J.L. Vázquez Finite difference method for a general fractional porous medium equation, 2013 | arXiv

[20] J.L. Vázquez Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type, J. Eur. Math. Soc. (2013) (in press) | arXiv

[21] J.L. Vázquez Nonlinear diffusion with fractional Laplacian operators (H. Holden; K.H. Karlsen, eds.), Nonlinear Partial Differential Equations: The Abel Symposium 2010, Springer, 2012, pp. 271-298

Cited by Sources:

Comments - Policy