Comptes Rendus
Partial differential equations
Finite and infinite speed of propagation for porous medium equations with fractional pressure
[Vitesse de propagation finie et infinie pour des équations du milieu poreux avec une pression fractionnaire]
Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 123-128.

Nous étudions une équation du milieu poreux avec une pression potentielle fractionnaire : tu=(um1p), p=(Δ)su, pour m>1, 0<s<1 et u(x,t)0. Le problème se pose pour xRN, N1 et t>0. La donnée initiale est supposée bornée avec support compact ou décroissance rapide à lʼinfini. Lorsque le paramètre m est variable, on obtient deux comportements différents comme suit : si m[1,2), le problème a une vitesse de propagation infinie, alors que pour m[2,), elle a une vitesse de propagation finie. On compare le résultat avec les comportements dʼautres modèles de diffusion non linéaire, qui sont très différents.

We study a porous medium equation with fractional potential pressure:

tu=(um1p),p=(Δ)su,
for m>1, 0<s<1 and u(x,t)0. To be specific, the problem is posed for xRN, N1, and t>0. The initial data u(x,0) is assumed to be a bounded function with compact support or fast decay at infinity. We establish the existence of a class of weak solutions for which we determine whether, depending on the parameter m, the property of compact support is conserved in time or not, starting from the result of finite propagation known for m=2. We find that when m[1,2) the problem has infinite speed of propagation, while for m[2,) it has finite speed of propagation. Comparison is made with other nonlinear diffusion models where the results are widely different.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.12.003

Diana Stan 1 ; Félix del Teso 1 ; Juan Luis Vázquez 1

1 Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
@article{CRMATH_2014__352_2_123_0,
     author = {Diana Stan and F\'elix del Teso and Juan Luis V\'azquez},
     title = {Finite and infinite speed of propagation for porous medium equations with fractional pressure},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {123--128},
     publisher = {Elsevier},
     volume = {352},
     number = {2},
     year = {2014},
     doi = {10.1016/j.crma.2013.12.003},
     language = {en},
}
TY  - JOUR
AU  - Diana Stan
AU  - Félix del Teso
AU  - Juan Luis Vázquez
TI  - Finite and infinite speed of propagation for porous medium equations with fractional pressure
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 123
EP  - 128
VL  - 352
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2013.12.003
LA  - en
ID  - CRMATH_2014__352_2_123_0
ER  - 
%0 Journal Article
%A Diana Stan
%A Félix del Teso
%A Juan Luis Vázquez
%T Finite and infinite speed of propagation for porous medium equations with fractional pressure
%J Comptes Rendus. Mathématique
%D 2014
%P 123-128
%V 352
%N 2
%I Elsevier
%R 10.1016/j.crma.2013.12.003
%G en
%F CRMATH_2014__352_2_123_0
Diana Stan; Félix del Teso; Juan Luis Vázquez. Finite and infinite speed of propagation for porous medium equations with fractional pressure. Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 123-128. doi : 10.1016/j.crma.2013.12.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.12.003/

[1] P. Biler; C. Imbert; G. Karch Barenblatt profiles for a nonlocal porous medium equation, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 11–12, pp. 641-645

[2] P. Biler; C. Imbert; G. Karch Nonlocal porous medium equation: Barenblatt profiles and other weak solutions, 2013 | arXiv

[3] P. Biler; G. Karch; R. Monneau Nonlinear diffusion of dislocation density and self-similar solutions, Commun. Math. Phys., Volume 294 (2010) no. 1, pp. 145-168

[4] L. Caffarelli; J.L. Vázquez Nonlinear porous medium flow with fractional potential pressure, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 537-565

[5] L. Caffarelli; J.L. Vázquez Asymptotic behaviour of a porous medium equation with fractional diffusion, Discrete Contin. Dyn. Syst., Volume 29 (2011) no. 4, pp. 1393-1404

[6] L. Caffarelli; F. Soria; J.L. Vázquez Regularity of solutions of the fractional porous medium flow, J. Eur. Math. Soc., Volume 15 (2013) no. 5, pp. 1701-1746

[7] X. Cabré; J.M. Roquejoffre Front propagation in Fisher–KPP equations with fractional diffusion, Commun. Math. Phys., Volume 320 (2013) no. 3, pp. 679-722

[8] M. Crandall; H. Ishii; P.L. Lions Userʼs guide to viscosity solutions of second order partial differential equations, Bull., New Ser., Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67

[9] A. De Pablo; F. Quirós; A. Rodriguez; J.L. Vázquez A fractional porous medium equation, Adv. Math., Volume 226 (2011) no. 2, pp. 1378-1409

[10] A. De Pablo; F. Quirós; A. Rodriguez; J.L. Vázquez A general fractional porous medium equation, Commun. Pure Appl. Math., Volume 65 (2012), pp. 1242-1284 | arXiv

[11] G. Giacomin; J.L. Lebowitz; E. Presutti Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems, Stochastic Partial Differential Equations: Six Perspectives, Math. Surveys Monogr., vol. 64, American Mathematical Society, Providence, RI, 1999, pp. 107-152

[12] A.K. Head Dislocation group dynamics III. Similarity solutions of the continuum approximation, Philos. Mag., Volume 26 (1972) no. 1, pp. 65-72

[13] Y. Huang, Explicit Barenblatt profiles for fractional porous medium equations, in preparation.

[14] C. Imbert; R. Monneau; E. Rouy Homogenization of first-order equations with (u/e)-periodic Hamiltonians. II. Application to dislocations dynamics, Commun. Partial Differ. Equ., Volume 33 (2008) no. 1–3, pp. 479-516

[15] E.R. Jakobsen; K.H. Karlsen A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations, Nonlinear Differ. Equ. Appl., Volume 13 (2006), pp. 137-165

[16] D. Stan; J.L. Vázquez The Fisher–KPP equation with nonlinear fractional diffusion, 2013 (to appear in SIAM J. Math. Anal) | arXiv

[17] D. Stan, F. del Teso, J.L. Vázquez, Finite speed of propagation for degenerate parabolic equations with fractional pressure, in preparation.

[18] F. del Teso Finite difference method for a fractional porous medium equation (Calcolo, December 2013) | arXiv

[19] F. del Teso; J.L. Vázquez Finite difference method for a general fractional porous medium equation, 2013 | arXiv

[20] J.L. Vázquez Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type, J. Eur. Math. Soc. (2013) (in press) | arXiv

[21] J.L. Vázquez Nonlinear diffusion with fractional Laplacian operators (H. Holden; K.H. Karlsen, eds.), Nonlinear Partial Differential Equations: The Abel Symposium 2010, Springer, 2012, pp. 271-298

  • E. Abreu; J. C. Valencia-Guevara; M. Huacasi-Machaca; J. Pérez A numerical scheme for doubly nonlocal conservation laws, Calcolo, Volume 61 (2024) no. 4 | DOI:10.1007/s10092-024-00624-x
  • Irina Meghea Mathematical Models for Removal of Pharmaceutical Pollutants in Rehabilitated Treatment Plants, Mathematics, Volume 12 (2024) no. 21, p. 3446 | DOI:10.3390/math12213446
  • Nhan-Phu Chung; Quoc-Hung Nguyen Gradient Flows of Modified Wasserstein Distances and Porous Medium Equations with Nonlocal Pressure, Acta Mathematica Vietnamica, Volume 48 (2023) no. 1, p. 209 | DOI:10.1007/s40306-023-00497-2
  • Hanna Okrasińska-Płociniczak; Łukasz Płociniczak Second order scheme for self-similar solutions of a time-fractional porous medium equation on the half-line, Applied Mathematics and Computation, Volume 424 (2022), p. 127033 | DOI:10.1016/j.amc.2022.127033
  • Li Chen; Alexandra Holzinger; Ansgar Jüngel; Nicola Zamponi Analysis and mean-field derivation of a porous-medium equation with fractional diffusion, Communications in Partial Differential Equations, Volume 47 (2022) no. 11, p. 2217 | DOI:10.1080/03605302.2022.2118608
  • Grzegorz Karch; Moritz Kassmann; Miłosz Krupski A Framework for Nonlocal, Nonlinear Initial Value Problems, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 3, p. 2383 | DOI:10.1137/19m124143x
  • Diana Stan; Félix del Teso; Juan Luis Vázquez Existence of Weak Solutions for a General Porous Medium Equation with Nonlocal Pressure, Archive for Rational Mechanics and Analysis, Volume 233 (2019) no. 1, p. 451 | DOI:10.1007/s00205-019-01361-0
  • Łukasz Płociniczak Derivation of the nonlocal pressure form of the fractional porous medium equation in the hydrological setting, Communications in Nonlinear Science and Numerical Simulation, Volume 76 (2019), p. 66 | DOI:10.1016/j.cnsns.2019.04.014
  • Jean-Daniel Djida; Juan J. Nieto; Iván Area Nonlocal time porous medium equation with fractional time derivative, Revista Matemática Complutense, Volume 32 (2019) no. 2, p. 273 | DOI:10.1007/s13163-018-0287-0
  • Łukasz Płociniczak Numerical Method for the Time-Fractional Porous Medium Equation, SIAM Journal on Numerical Analysis, Volume 57 (2019) no. 2, p. 638 | DOI:10.1137/18m1192561
  • Quoc-Hung Nguyen; Juan Luis Vázquez Porous medium equation with nonlocal pressure in a bounded domain, Communications in Partial Differential Equations, Volume 43 (2018) no. 10, p. 1502 | DOI:10.1080/03605302.2018.1475492
  • Diana Stan; Félix del Teso; Juan Luis Vázquez Porous Medium Equation with Nonlocal Pressure, Current Research in Nonlinear Analysis, Volume 135 (2018), p. 277 | DOI:10.1007/978-3-319-89800-1_12
  • Alessandro De Gregorio Stochastic models associated to a Nonlocal Porous Medium Equation, Modern Stochastics: Theory and Applications (2018), p. 457 | DOI:10.15559/18-vmsta112
  • Simone Rossi; Boyce E. Griffith Incorporating inductances in tissue-scale models of cardiac electrophysiology, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 27 (2017) no. 9 | DOI:10.1063/1.5000706
  • Matteo Bonforte; Alessio Figalli; Xavier Ros‐Oton Infinite Speed of Propagation and Regularity of Solutions to the Fractional Porous Medium Equation in General Domains, Communications on Pure and Applied Mathematics, Volume 70 (2017) no. 8, p. 1472 | DOI:10.1002/cpa.21673
  • Diana Stan; Félix del Teso; Juan Luis Vázquez Finite and infinite speed of propagation for porous medium equations with nonlocal pressure, Journal of Differential Equations, Volume 260 (2016) no. 2, p. 1154 | DOI:10.1016/j.jde.2015.09.023
  • Juan Luis Vázquez The Dirichlet problem for the fractional p-Laplacian evolution equation, Journal of Differential Equations, Volume 260 (2016) no. 7, p. 6038 | DOI:10.1016/j.jde.2015.12.033
  • Piotr Biler; Cyril Imbert; Grzegorz Karch The Nonlocal Porous Medium Equation: Barenblatt Profiles and Other Weak Solutions, Archive for Rational Mechanics and Analysis, Volume 215 (2015) no. 2, p. 497 | DOI:10.1007/s00205-014-0786-1
  • Diana Stan; Félix del Teso; Juan Luis Vázquez Transformations of self-similar solutions for porous medium equations of fractional type, Nonlinear Analysis: Theory, Methods Applications, Volume 119 (2015), p. 62 | DOI:10.1016/j.na.2014.08.009
  • José Antonio Carrillo; Juan Luis Vázquez Some free boundary problems involving non-local diffusion and aggregation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 373 (2015) no. 2050, p. 20140275 | DOI:10.1098/rsta.2014.0275
  • Yanghong Huang Explicit Barenblatt profiles for fractional porous medium equations, Bulletin of the London Mathematical Society, Volume 46 (2014) no. 4, p. 857 | DOI:10.1112/blms/bdu045
  • Juan-Luis Vázquez Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Continuous Dynamical Systems - S, Volume 7 (2014) no. 4, p. 857 | DOI:10.3934/dcdss.2014.7.857

Cité par 22 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: