[Vitesse de propagation finie et infinie pour des équations du milieu poreux avec une pression fractionnaire]
Nous étudions une équation du milieu poreux avec une pression potentielle fractionnaire :
We study a porous medium equation with fractional potential pressure:
Accepté le :
Publié le :
Diana Stan 1 ; Félix del Teso 1 ; Juan Luis Vázquez 1
@article{CRMATH_2014__352_2_123_0, author = {Diana Stan and F\'elix del Teso and Juan Luis V\'azquez}, title = {Finite and infinite speed of propagation for porous medium equations with fractional pressure}, journal = {Comptes Rendus. Math\'ematique}, pages = {123--128}, publisher = {Elsevier}, volume = {352}, number = {2}, year = {2014}, doi = {10.1016/j.crma.2013.12.003}, language = {en}, }
TY - JOUR AU - Diana Stan AU - Félix del Teso AU - Juan Luis Vázquez TI - Finite and infinite speed of propagation for porous medium equations with fractional pressure JO - Comptes Rendus. Mathématique PY - 2014 SP - 123 EP - 128 VL - 352 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2013.12.003 LA - en ID - CRMATH_2014__352_2_123_0 ER -
%0 Journal Article %A Diana Stan %A Félix del Teso %A Juan Luis Vázquez %T Finite and infinite speed of propagation for porous medium equations with fractional pressure %J Comptes Rendus. Mathématique %D 2014 %P 123-128 %V 352 %N 2 %I Elsevier %R 10.1016/j.crma.2013.12.003 %G en %F CRMATH_2014__352_2_123_0
Diana Stan; Félix del Teso; Juan Luis Vázquez. Finite and infinite speed of propagation for porous medium equations with fractional pressure. Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 123-128. doi : 10.1016/j.crma.2013.12.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.12.003/
[1] Barenblatt profiles for a nonlocal porous medium equation, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 11–12, pp. 641-645
[2] Nonlocal porous medium equation: Barenblatt profiles and other weak solutions, 2013 | arXiv
[3] Nonlinear diffusion of dislocation density and self-similar solutions, Commun. Math. Phys., Volume 294 (2010) no. 1, pp. 145-168
[4] Nonlinear porous medium flow with fractional potential pressure, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 537-565
[5] Asymptotic behaviour of a porous medium equation with fractional diffusion, Discrete Contin. Dyn. Syst., Volume 29 (2011) no. 4, pp. 1393-1404
[6] Regularity of solutions of the fractional porous medium flow, J. Eur. Math. Soc., Volume 15 (2013) no. 5, pp. 1701-1746
[7] Front propagation in Fisher–KPP equations with fractional diffusion, Commun. Math. Phys., Volume 320 (2013) no. 3, pp. 679-722
[8] Userʼs guide to viscosity solutions of second order partial differential equations, Bull., New Ser., Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67
[9] A fractional porous medium equation, Adv. Math., Volume 226 (2011) no. 2, pp. 1378-1409
[10] A general fractional porous medium equation, Commun. Pure Appl. Math., Volume 65 (2012), pp. 1242-1284 | arXiv
[11] Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems, Stochastic Partial Differential Equations: Six Perspectives, Math. Surveys Monogr., vol. 64, American Mathematical Society, Providence, RI, 1999, pp. 107-152
[12] Dislocation group dynamics III. Similarity solutions of the continuum approximation, Philos. Mag., Volume 26 (1972) no. 1, pp. 65-72
[13] Y. Huang, Explicit Barenblatt profiles for fractional porous medium equations, in preparation.
[14] Homogenization of first-order equations with (u/e)-periodic Hamiltonians. II. Application to dislocations dynamics, Commun. Partial Differ. Equ., Volume 33 (2008) no. 1–3, pp. 479-516
[15] A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations, Nonlinear Differ. Equ. Appl., Volume 13 (2006), pp. 137-165
[16] The Fisher–KPP equation with nonlinear fractional diffusion, 2013 (to appear in SIAM J. Math. Anal) | arXiv
[17] D. Stan, F. del Teso, J.L. Vázquez, Finite speed of propagation for degenerate parabolic equations with fractional pressure, in preparation.
[18] Finite difference method for a fractional porous medium equation (Calcolo, December 2013) | arXiv
[19] Finite difference method for a general fractional porous medium equation, 2013 | arXiv
[20] Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type, J. Eur. Math. Soc. (2013) (in press) | arXiv
[21] Nonlinear diffusion with fractional Laplacian operators (H. Holden; K.H. Karlsen, eds.), Nonlinear Partial Differential Equations: The Abel Symposium 2010, Springer, 2012, pp. 271-298
- A numerical scheme for doubly nonlocal conservation laws, Calcolo, Volume 61 (2024) no. 4 | DOI:10.1007/s10092-024-00624-x
- Mathematical Models for Removal of Pharmaceutical Pollutants in Rehabilitated Treatment Plants, Mathematics, Volume 12 (2024) no. 21, p. 3446 | DOI:10.3390/math12213446
- Gradient Flows of Modified Wasserstein Distances and Porous Medium Equations with Nonlocal Pressure, Acta Mathematica Vietnamica, Volume 48 (2023) no. 1, p. 209 | DOI:10.1007/s40306-023-00497-2
- Second order scheme for self-similar solutions of a time-fractional porous medium equation on the half-line, Applied Mathematics and Computation, Volume 424 (2022), p. 127033 | DOI:10.1016/j.amc.2022.127033
- Analysis and mean-field derivation of a porous-medium equation with fractional diffusion, Communications in Partial Differential Equations, Volume 47 (2022) no. 11, p. 2217 | DOI:10.1080/03605302.2022.2118608
- A Framework for Nonlocal, Nonlinear Initial Value Problems, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 3, p. 2383 | DOI:10.1137/19m124143x
- Existence of Weak Solutions for a General Porous Medium Equation with Nonlocal Pressure, Archive for Rational Mechanics and Analysis, Volume 233 (2019) no. 1, p. 451 | DOI:10.1007/s00205-019-01361-0
- Derivation of the nonlocal pressure form of the fractional porous medium equation in the hydrological setting, Communications in Nonlinear Science and Numerical Simulation, Volume 76 (2019), p. 66 | DOI:10.1016/j.cnsns.2019.04.014
- Nonlocal time porous medium equation with fractional time derivative, Revista Matemática Complutense, Volume 32 (2019) no. 2, p. 273 | DOI:10.1007/s13163-018-0287-0
- Numerical Method for the Time-Fractional Porous Medium Equation, SIAM Journal on Numerical Analysis, Volume 57 (2019) no. 2, p. 638 | DOI:10.1137/18m1192561
- Porous medium equation with nonlocal pressure in a bounded domain, Communications in Partial Differential Equations, Volume 43 (2018) no. 10, p. 1502 | DOI:10.1080/03605302.2018.1475492
- Porous Medium Equation with Nonlocal Pressure, Current Research in Nonlinear Analysis, Volume 135 (2018), p. 277 | DOI:10.1007/978-3-319-89800-1_12
- Stochastic models associated to a Nonlocal Porous Medium Equation, Modern Stochastics: Theory and Applications (2018), p. 457 | DOI:10.15559/18-vmsta112
- Incorporating inductances in tissue-scale models of cardiac electrophysiology, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 27 (2017) no. 9 | DOI:10.1063/1.5000706
- Infinite Speed of Propagation and Regularity of Solutions to the Fractional Porous Medium Equation in General Domains, Communications on Pure and Applied Mathematics, Volume 70 (2017) no. 8, p. 1472 | DOI:10.1002/cpa.21673
- Finite and infinite speed of propagation for porous medium equations with nonlocal pressure, Journal of Differential Equations, Volume 260 (2016) no. 2, p. 1154 | DOI:10.1016/j.jde.2015.09.023
- The Dirichlet problem for the fractional p-Laplacian evolution equation, Journal of Differential Equations, Volume 260 (2016) no. 7, p. 6038 | DOI:10.1016/j.jde.2015.12.033
- The Nonlocal Porous Medium Equation: Barenblatt Profiles and Other Weak Solutions, Archive for Rational Mechanics and Analysis, Volume 215 (2015) no. 2, p. 497 | DOI:10.1007/s00205-014-0786-1
- Transformations of self-similar solutions for porous medium equations of fractional type, Nonlinear Analysis: Theory, Methods Applications, Volume 119 (2015), p. 62 | DOI:10.1016/j.na.2014.08.009
- Some free boundary problems involving non-local diffusion and aggregation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 373 (2015) no. 2050, p. 20140275 | DOI:10.1098/rsta.2014.0275
- Explicit Barenblatt profiles for fractional porous medium equations, Bulletin of the London Mathematical Society, Volume 46 (2014) no. 4, p. 857 | DOI:10.1112/blms/bdu045
- Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Continuous Dynamical Systems - S, Volume 7 (2014) no. 4, p. 857 | DOI:10.3934/dcdss.2014.7.857
Cité par 22 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier