A power series that converges on the unit disc is called universal if its partial sums approximate arbitrary polynomials on arbitrary compacta in that have connected complement. This paper shows that such series grow strongly and possess a Picard-type property near each boundary point.
Une série entière qui converge sur le disque unité est appelée universelle si tout polynôme peut être approximé, sur tout compact de ayant un complémentaire connexe, par ses sommes partielles. Cet article montre que ces séries croissent fortement et possèdent une propriété du type Picard près de chaque point de la frontière.
Accepted:
Published online:
Stephen J. Gardiner 1; Dmitry Khavinson 2
@article{CRMATH_2014__352_2_99_0, author = {Stephen J. Gardiner and Dmitry Khavinson}, title = {Boundary behaviour of universal {Taylor} series}, journal = {Comptes Rendus. Math\'ematique}, pages = {99--103}, publisher = {Elsevier}, volume = {352}, number = {2}, year = {2014}, doi = {10.1016/j.crma.2013.12.008}, language = {en}, }
Stephen J. Gardiner; Dmitry Khavinson. Boundary behaviour of universal Taylor series. Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 99-103. doi : 10.1016/j.crma.2013.12.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.12.008/
[1] An extension of Schwarzʼs lemma, Trans. Amer. Math. Soc., Volume 43 (1938), pp. 359-364
[2] Boundary behavior of universal Taylor series and their derivatives, Constr. Approx., Volume 24 (2006), pp. 1-15
[3] Classical Potential Theory, Springer, London, 2001
[4] Boundary behavior and Cesàro means of universal Taylor series, Rev. Mat. Complut., Volume 19 (2006), pp. 235-247
[5] Abstract theory of universal series and applications, Proc. Lond. Math. Soc., Volume 96 (2008), pp. 417-463
[6] Universal Taylor series with maximal cluster sets, Rev. Mat. Iberoam., Volume 25 (2009), pp. 757-780
[7] On the radial behavior of universal Taylor series, Monatshefte Math., Volume 145 (2005), pp. 11-17
[8] On the range of universal functions, Bull. Lond. Math. Soc., Volume 32 (2000), pp. 458-464
[9] On the existence of a largest subharmonic minorant of a given function, Ark. Mat., Volume 3 (1957), pp. 429-440
[10] Boundary behaviour of functions which possess universal Taylor series, Bull. Lond. Math. Soc., Volume 45 (2013), pp. 191-199
[11] Universal Taylor series, conformal mappings and boundary behaviour, Ann. Inst. Fourier, Volume 63 (2013) (in press)
[12] Universal overconvergence of homogeneous expansions of harmonic functions, Analysis, Volume 26 (2006), pp. 287-293
[13] Universal polynomial expansions of harmonic functions, Potential Anal., Volume 38 (2013), pp. 985-1000
[14] On the growth of universal functions, J. Anal. Math., Volume 82 (2000), pp. 1-20
[15] Universality of Taylor series as a generic property of holomorphic functions, Adv. Math., Volume 157 (2001), pp. 138-176
[16] Growth of coefficients of universal Taylor series and comparison of two classes of functions, J. Anal. Math., Volume 73 (1997), pp. 187-202
[17] Universal overconvergence and Ostrowski-gaps, Bull. Lond. Math. Soc., Volume 38 (2006), pp. 597-606
[18] Universal Taylor series, Ann. Inst. Fourier, Volume 46 (1996), pp. 1293-1306
[19] An extension of the notion of universal Taylor series, Nicosia, 1997 (Ser. Approx. Decompos.), Volume vol. 11, World Sci. Publ., River Edge, NJ (1999), pp. 421-430
[20] Sur les minorantes sousharmoniques dʼune fonction donnée, 9e$ {9}^{\mathrm{e}}$ Congr. des mathématiques scandinaves, 1939, pp. 309-319
Cited by Sources:
☆ The first author was supported by Science Foundation Ireland under Grant 09/RFP/MTH2149, and the second author by NSF grant DMS 0855597.
Comments - Policy