[Comportement à la frontière des séries de Taylor universelles]
A power series that converges on the unit disc
Une série entière qui converge sur le disque unité
Accepté le :
Publié le :
Stephen J. Gardiner 1 ; Dmitry Khavinson 2
@article{CRMATH_2014__352_2_99_0, author = {Stephen J. Gardiner and Dmitry Khavinson}, title = {Boundary behaviour of universal {Taylor} series}, journal = {Comptes Rendus. Math\'ematique}, pages = {99--103}, publisher = {Elsevier}, volume = {352}, number = {2}, year = {2014}, doi = {10.1016/j.crma.2013.12.008}, language = {en}, }
Stephen J. Gardiner; Dmitry Khavinson. Boundary behaviour of universal Taylor series. Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 99-103. doi : 10.1016/j.crma.2013.12.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.12.008/
[1] An extension of Schwarzʼs lemma, Trans. Amer. Math. Soc., Volume 43 (1938), pp. 359-364
[2] Boundary behavior of universal Taylor series and their derivatives, Constr. Approx., Volume 24 (2006), pp. 1-15
[3] Classical Potential Theory, Springer, London, 2001
[4] Boundary behavior and Cesàro means of universal Taylor series, Rev. Mat. Complut., Volume 19 (2006), pp. 235-247
[5] Abstract theory of universal series and applications, Proc. Lond. Math. Soc., Volume 96 (2008), pp. 417-463
[6] Universal Taylor series with maximal cluster sets, Rev. Mat. Iberoam., Volume 25 (2009), pp. 757-780
[7] On the radial behavior of universal Taylor series, Monatshefte Math., Volume 145 (2005), pp. 11-17
[8] On the range of universal functions, Bull. Lond. Math. Soc., Volume 32 (2000), pp. 458-464
[9] On the existence of a largest subharmonic minorant of a given function, Ark. Mat., Volume 3 (1957), pp. 429-440
[10] Boundary behaviour of functions which possess universal Taylor series, Bull. Lond. Math. Soc., Volume 45 (2013), pp. 191-199
[11] Universal Taylor series, conformal mappings and boundary behaviour, Ann. Inst. Fourier, Volume 63 (2013) (in press)
[12] Universal overconvergence of homogeneous expansions of harmonic functions, Analysis, Volume 26 (2006), pp. 287-293
[13] Universal polynomial expansions of harmonic functions, Potential Anal., Volume 38 (2013), pp. 985-1000
[14] On the growth of universal functions, J. Anal. Math., Volume 82 (2000), pp. 1-20
[15] Universality of Taylor series as a generic property of holomorphic functions, Adv. Math., Volume 157 (2001), pp. 138-176
[16] Growth of coefficients of universal Taylor series and comparison of two classes of functions, J. Anal. Math., Volume 73 (1997), pp. 187-202
[17] Universal overconvergence and Ostrowski-gaps, Bull. Lond. Math. Soc., Volume 38 (2006), pp. 597-606
[18] Universal Taylor series, Ann. Inst. Fourier, Volume 46 (1996), pp. 1293-1306
[19] An extension of the notion of universal Taylor series, Nicosia, 1997 (Ser. Approx. Decompos.), Volume vol. 11, World Sci. Publ., River Edge, NJ (1999), pp. 421-430
[20] Sur les minorantes sousharmoniques dʼune fonction donnée, 9e$ {9}^{\mathrm{e}}$ Congr. des mathématiques scandinaves, 1939, pp. 309-319
- Universal radial approximation in spaces of analytic functions, Journal of Mathematical Analysis and Applications, Volume 512 (2022) no. 1, p. 126102 | DOI:10.1016/j.jmaa.2022.126102
- One-sided extendability of bounded functions, Complex Analysis and its Synergies, Volume 7 (2021) no. 2 | DOI:10.1007/s40627-021-00076-x
- An elliptic adaptation of ideas of Carleman and Domar from complex analysis related to Levinson’s loglog theorem, Journal of Mathematical Physics, Volume 62 (2021) no. 6 | DOI:10.1063/5.0044798
- Simultaneous zero-free approximation and universal optimal polynomial approximants, Journal of Approximation Theory, Volume 256 (2020), p. 105389 | DOI:10.1016/j.jat.2020.105389
- Universal Taylor Series Without Baire and the Influence of J.-P. Kahane, Analysis Mathematica, Volume 44 (2018) no. 2, p. 237 | DOI:10.1007/s10476-018-0208-y
- Taylor Series, Universality and Potential Theory, New Trends in Approximation Theory, Volume 81 (2018), p. 247 | DOI:10.1007/978-1-4939-7543-3_14
- Boundary behaviour of Dirichlet series with applications to universal series, Bulletin of the London Mathematical Society, Volume 48 (2016) no. 5, p. 735 | DOI:10.1112/blms/bdw037
- A convergence theorem for harmonic measures with applications to Taylor series, Proceedings of the American Mathematical Society, Volume 144 (2015) no. 3, p. 1109 | DOI:10.1090/proc/12764
Cité par 8 documents. Sources : Crossref
☆ The first author was supported by Science Foundation Ireland under Grant 09/RFP/MTH2149, and the second author by NSF grant DMS 0855597.
Commentaires - Politique