Comptes Rendus
Mathematical analysis
An extremal problem for polynomials
Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 95-97.

We give a solution to an extremal problem for polynomials, which asks for complex numbers α0,,αn of unit magnitude that minimise the largest supremum norm on the unit circle for all polynomials of degree n whose k-th coefficient is either αk or αk.

Nous donnons dans ce papier une solution à un problème extrémal sur les polynômes, qui est de trouver des nombres complexes α0,,αn de module égal à 1 qui minimisent, sur le cercle unité, la plus grande borne supérieure de la norme pour tous les polynômes de degré n qui ont pour ke coefficient αk ou αk.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.12.011

Kai-Uwe Schmidt 1

1 Faculty of Mathematics, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
@article{CRMATH_2014__352_2_95_0,
     author = {Kai-Uwe Schmidt},
     title = {An extremal problem for polynomials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {95--97},
     publisher = {Elsevier},
     volume = {352},
     number = {2},
     year = {2014},
     doi = {10.1016/j.crma.2013.12.011},
     language = {en},
}
TY  - JOUR
AU  - Kai-Uwe Schmidt
TI  - An extremal problem for polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 95
EP  - 97
VL  - 352
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2013.12.011
LA  - en
ID  - CRMATH_2014__352_2_95_0
ER  - 
%0 Journal Article
%A Kai-Uwe Schmidt
%T An extremal problem for polynomials
%J Comptes Rendus. Mathématique
%D 2014
%P 95-97
%V 352
%N 2
%I Elsevier
%R 10.1016/j.crma.2013.12.011
%G en
%F CRMATH_2014__352_2_95_0
Kai-Uwe Schmidt. An extremal problem for polynomials. Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 95-97. doi : 10.1016/j.crma.2013.12.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.12.011/

[1] P. Borwein Computational Excursions in Analysis and Number Theory, CMS Books Math., Springer-Verlag, New York, NY, 2002

[2] T. Erdélyi Polynomials with Littlewood-type coefficient constraints, Approximation Theory, X (St. Louis, MO, 2001), Innov. Appl. Math., Vanderbilt University Press, Nashville, TN, 2002, pp. 153-196

[3] P. Erdös Some unsolved problems, Mich. Math. J., Volume 4 (1957), pp. 291-300

[4] P. Erdös An inequality for the maximum of trigonometric polynomials, Ann. Pol. Math., Volume 12 (1962), pp. 151-154

[5] J.-P. Kahane Sur les polynômes à coefficients unimodulaires, Bull. Lond. Math. Soc., Volume 12 (1980), pp. 321-342

[6] S. Litsyn; G. Wunder Generalized bounds on the crest-factor distribution of OFDM signals with applications to code design, IEEE Trans. Inf. Theory, Volume 52 (2006), pp. 992-1006

[7] J.E. Littlewood On polynomials n±zm, neαmizm, z=eθi, J. Lond. Math. Soc., Volume 41 (1966), pp. 367-376

[8] J.E. Littlewood Some Problems in Real and Complex Analysis, Heath Math. Monogr., D.C. Heath and Company, Lexington, MA, 1968

[9] K.-U. Schmidt On the peak-to-mean envelope power ratio of phase-shifted binary codes, IEEE Trans. Commun., Volume 56 (2008), pp. 1816-1823

[10] V. Tarokh; H. Jafarkhani On the computation and reduction of the peak-to-average power ratio in multicarrier communications, IEEE Trans. Commun., Volume 48 (2000), pp. 37-44

[11] H. Weyl Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann., Volume 77 (1916) no. 3, pp. 313-352

Cited by Sources:

Comments - Policy