We provide details for the proof of Fujita's second theorem and prove that for a Kähler fibre space over a smooth projective curve B, the direct image of the relative dualizing sheaf is the direct sum of an ample and a unitary flat bundle. We also show that V needs not be semiample, which is our main result.
Nous donnons des détails sur la démonstration du second théorème de Fujita et nous montrons que l'image directe du fibré canonique relatif d'une fibration sur une courbe B est la somme directe d'un fibré vectoriel ample et d'un fibré vectoriel unitairement plat si l'espace total X est une variété kählérienne compacte. Nous montrons en outre que V n'est en général pas semi-ample, ce qui constitue notre résultat principal.
Accepted:
Published online:
Fabrizio Catanese 1; Michael Dettweiler 1
@article{CRMATH_2014__352_3_241_0, author = {Fabrizio Catanese and Michael Dettweiler}, title = {The direct image of the relative dualizing sheaf needs not be semiample}, journal = {Comptes Rendus. Math\'ematique}, pages = {241--244}, publisher = {Elsevier}, volume = {352}, number = {3}, year = {2014}, doi = {10.1016/j.crma.2013.12.015}, language = {en}, }
TY - JOUR AU - Fabrizio Catanese AU - Michael Dettweiler TI - The direct image of the relative dualizing sheaf needs not be semiample JO - Comptes Rendus. Mathématique PY - 2014 SP - 241 EP - 244 VL - 352 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2013.12.015 LA - en ID - CRMATH_2014__352_3_241_0 ER -
Fabrizio Catanese; Michael Dettweiler. The direct image of the relative dualizing sheaf needs not be semiample. Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 241-244. doi : 10.1016/j.crma.2013.12.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.12.015/
[1] Answer to a question by Fujita on variation of Hodge structures, 2013 (preprint, 26 pages) | arXiv
[2] Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math. IHÉS, Volume 63 (1986), pp. 5-89
[3] On Kähler fiber spaces over curves, J. Math. Soc. Jpn., Volume 30 (1978) no. 4, pp. 779-794
[4] The sheaf of relative canonical forms of a Kähler fiber space over a curve, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 54 (1978) no. 7, pp. 183-184
[5] Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping, Publ. Math. IHÉS, Volume 38 (1970), pp. 125-180
[6] Topics in Transcendental Algebraic Geometry, Annals of Mathematics Studies, vol. 106, Princeton University Press, 1984
[7] Principles of Algebraic Geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978
[8] Recent developments in Hodge theory: A discussion of techniques and results, 1973 (1975), pp. 31-127
[9] Ample vector bundles on curves, Nagoya Math. J., Volume 43 (1971), pp. 73-89
[10] Classification of algebraic and analytic manifolds, Proc. Symp. Katata/Jap. (Kenji Ueno, ed.) (Progress in Mathematics), Volume vol. 39, Birkhäuser, Boston, Mass. (1983), pp. 591-630 (Open problems: Classification of algebraic and analytic manifolds, 1982)
[11] Kodaira dimension of algebraic fiber spaces over curves, Invent. Math., Volume 66 (1982) no. 1, pp. 57-71
[12] Toroidal Embeddings, I, Lecture Notes in Mathematics, vol. 739, Springer, 1973 (viii+209 p)
[13] Global Analysis in Linear Differential Equations, Kluwer Academic Publishers, 1999
[14] Higher direct images of dualizing sheaves. I, II, Ann. Math. (2), Volume 123 (1986), pp. 11-42
[15] Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, vol. 49, Springer-Verlag, Berlin, 2004 (xviii+385 p)
[16] A criterion for flatness of Hodge bundles over curves and geometric applications, Math. Ann., Volume 268 (1984) no. 1, pp. 1-19
[17] Variation of Hodge structure: The singularities of the period mapping, Invent. Math., Volume 22 (1973), pp. 211-319
[18] Über diejenigen Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Funktion ihres vierten Elements darstellt, J. Reine Angew. Math., Volume 75 (1873), pp. 292-335
[19] Hodge theory with degenerating coefficients: -cohomology in the Poincaré metric, Ann. Math. (2), Volume 109 (1979), pp. 415-476
Cited by Sources:
Comments - Policy