Comptes Rendus
Lie algebras/Algebraic geometry
Remarks on level-one conformal blocks divisors
Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 179-182.

We show that conformal blocks divisors of type Br and Dr at level one are effective sums of boundary divisors of M¯0,n. We also prove that the conformal blocks divisor of type Br at level one with weights (ω1,,ω1) scales linearly with the level.

Nous montrons que les diviseurs des blocs conformes de type Br et Cr en niveau un sont des sommes effectives de diviseurs de bord de M¯0,n. Nous démontrons également que le diviseur des blocs conformes de type Br en niveau 1, et avec poids (ω1,,ω1), croît linéairement avec le niveau.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.01.003

Swarnava Mukhopadhyay 1

1 Department of Mathematics, University of Maryland, College Park, MD 20742-4015, USA
@article{CRMATH_2014__352_3_179_0,
     author = {Swarnava Mukhopadhyay},
     title = {Remarks on level-one conformal blocks divisors},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {179--182},
     publisher = {Elsevier},
     volume = {352},
     number = {3},
     year = {2014},
     doi = {10.1016/j.crma.2014.01.003},
     language = {en},
}
TY  - JOUR
AU  - Swarnava Mukhopadhyay
TI  - Remarks on level-one conformal blocks divisors
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 179
EP  - 182
VL  - 352
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2014.01.003
LA  - en
ID  - CRMATH_2014__352_3_179_0
ER  - 
%0 Journal Article
%A Swarnava Mukhopadhyay
%T Remarks on level-one conformal blocks divisors
%J Comptes Rendus. Mathématique
%D 2014
%P 179-182
%V 352
%N 3
%I Elsevier
%R 10.1016/j.crma.2014.01.003
%G en
%F CRMATH_2014__352_3_179_0
Swarnava Mukhopadhyay. Remarks on level-one conformal blocks divisors. Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 179-182. doi : 10.1016/j.crma.2014.01.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.003/

[1] P. Belkale; A. Gibney; S. Mukhopadhyay Quantum cohomology and conformal blocks on M¯0,n | arXiv

[2] N. Fakhruddin Chern classes of conformal blocks, Contemp. Math., Volume 564 (2012), pp. 145-176

[3] M. Fedorchuk New Nef divisors on M¯0,n | arXiv

[4] J. Fuchs; C. Schweigert The action of outer automorphisms on bundles of chiral blocks, Commun. Math. Phys., Volume 206 (1999) no. 3, pp. 691-736

[5] S. Keel; J. McKernan Contractible extremal rays on M¯0,n | arXiv

[6] S. Mukhopadhyay Rank-level duality and conformal block divisors | arXiv

[7] C. Sorger La formule de Verlinde, Astérisque, Volume 237 (1996), pp. 87-114 ([Exp. No. 794, 3])

Cited by Sources:

Comments - Policy