Comptes Rendus
Number theory/Mathematical analysis
Note on the differentiability of arithmetic Fourier series arising from Eisenstein series
Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 273-276.

The aim of this note is to present results concerning the differentiability of some Fourier series arising from Eisenstein series. Sine series exhibit different behaviours with respect to differentiability than the series with cosine function. The precise results are given for the series related to Eisenstein series of weight 2, whereas for the series arising from Eisenstein series of higher weight we conjecture the results.

Le but de cette note est de présenter des résultats concernant la dérivabilité de certaines séries de Fourier découlant des séries d'Eisenstein. Les séries de sinus se comportent différemment des séries de cosinus. Les résultats précis sont donnés pour les séries liées à la série d'Eisenstein de poids 2. Pour les séries découlant des séries d'Eisenstein de poids supérieur à 2, nous formulons une conjecture.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.02.009

Izabela Petrykiewicz 1

1 Université Joseph-Fourier, Institut Fourier, 100, rue des Maths, 38402 Saint-Martin-d'Hères, France
@article{CRMATH_2014__352_4_273_0,
     author = {Izabela Petrykiewicz},
     title = {Note on the differentiability of arithmetic {Fourier} series arising from {Eisenstein} series},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {273--276},
     publisher = {Elsevier},
     volume = {352},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crma.2014.02.009},
     language = {en},
}
TY  - JOUR
AU  - Izabela Petrykiewicz
TI  - Note on the differentiability of arithmetic Fourier series arising from Eisenstein series
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 273
EP  - 276
VL  - 352
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2014.02.009
LA  - en
ID  - CRMATH_2014__352_4_273_0
ER  - 
%0 Journal Article
%A Izabela Petrykiewicz
%T Note on the differentiability of arithmetic Fourier series arising from Eisenstein series
%J Comptes Rendus. Mathématique
%D 2014
%P 273-276
%V 352
%N 4
%I Elsevier
%R 10.1016/j.crma.2014.02.009
%G en
%F CRMATH_2014__352_4_273_0
Izabela Petrykiewicz. Note on the differentiability of arithmetic Fourier series arising from Eisenstein series. Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 273-276. doi : 10.1016/j.crma.2014.02.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.02.009/

[1] A.D. Brjuno; A.D. Brjuno Analytic form of differential equations. II, Tr. Mosk. Mat. Obs., Volume 25 (1971), pp. 119-262 (in Russian) (in Russian)

[2] F. Chamizo Automorphic forms and differentiability properties, Trans. Amer. Math. Soc., Volume 356 (2004), pp. 1909-1935

[3] S. Itatsu Differentiability of Riemann's function, Proc. Jpn. Acad. Ser. A Math. Sci., Volume 57 (1981) no. 10, pp. 492-495

[4] S. Jaffard The spectrum of singularities of Riemann's function, Rev. Mat. Iberoam., Volume 12 (1996) no. 2, pp. 441-460

[5] I. Petrykiewicz, Differentiability of Fourier series arising from Eisenstein series, in preparation.

[6] I. Petrykiewicz Hölder regularity of arithmetic Fourier series arising from modular forms (preprint) | arXiv

[7] J.R. Wilton An approximate functional equation with applications to a problem of Diophantine approximation, J. Reine Angew. Math., Volume 169 (1933), pp. 219-237

Cited by Sources:

Comments - Policy