The aim of this note is to present results concerning the differentiability of some Fourier series arising from Eisenstein series. Sine series exhibit different behaviours with respect to differentiability than the series with cosine function. The precise results are given for the series related to Eisenstein series of weight 2, whereas for the series arising from Eisenstein series of higher weight we conjecture the results.
Le but de cette note est de présenter des résultats concernant la dérivabilité de certaines séries de Fourier découlant des séries d'Eisenstein. Les séries de sinus se comportent différemment des séries de cosinus. Les résultats précis sont donnés pour les séries liées à la série d'Eisenstein de poids 2. Pour les séries découlant des séries d'Eisenstein de poids supérieur à 2, nous formulons une conjecture.
Accepted:
Published online:
Izabela Petrykiewicz 1
@article{CRMATH_2014__352_4_273_0, author = {Izabela Petrykiewicz}, title = {Note on the differentiability of arithmetic {Fourier} series arising from {Eisenstein} series}, journal = {Comptes Rendus. Math\'ematique}, pages = {273--276}, publisher = {Elsevier}, volume = {352}, number = {4}, year = {2014}, doi = {10.1016/j.crma.2014.02.009}, language = {en}, }
Izabela Petrykiewicz. Note on the differentiability of arithmetic Fourier series arising from Eisenstein series. Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 273-276. doi : 10.1016/j.crma.2014.02.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.02.009/
[1] Analytic form of differential equations. II, Tr. Mosk. Mat. Obs., Volume 25 (1971), pp. 119-262 (in Russian) (in Russian)
[2] Automorphic forms and differentiability properties, Trans. Amer. Math. Soc., Volume 356 (2004), pp. 1909-1935
[3] Differentiability of Riemann's function, Proc. Jpn. Acad. Ser. A Math. Sci., Volume 57 (1981) no. 10, pp. 492-495
[4] The spectrum of singularities of Riemann's function, Rev. Mat. Iberoam., Volume 12 (1996) no. 2, pp. 441-460
[5] I. Petrykiewicz, Differentiability of Fourier series arising from Eisenstein series, in preparation.
[6] Hölder regularity of arithmetic Fourier series arising from modular forms (preprint) | arXiv
[7] An approximate functional equation with applications to a problem of Diophantine approximation, J. Reine Angew. Math., Volume 169 (1933), pp. 219-237
Cited by Sources:
Comments - Policy