We define a new class of meromorphic bi-univalent functions and use the Faber polynomial expansions to determine the coefficient bounds for such functions. Our results generalize and/or improve some of the previously known results. A meromorphic function is said to be bi-univalent in a given domain Δ if both the function and its inverse map are univalent there.
Nous définissons une nouvelle classe de fonctions méromorphes bi-univalentes et utilisons des développements en polynômes de Faber pour déterminer des bornes sur les coefficients de ces fonctions. Nos résultats généralisent et améliorent certains résultats antérieurement connus. Une fonction méromorphe est dite ici être bi-univalente dans un domaine donné Δ si la fonction et sa fonction réciproques y sont toutes deux univalentes.
Accepted:
Published online:
Samaneh G. Hamidi 1; T. Janani 2; G. Murugusundaramoorthy 2; Jay M. Jahangiri 3
@article{CRMATH_2014__352_4_277_0, author = {Samaneh G. Hamidi and T. Janani and G. Murugusundaramoorthy and Jay M. Jahangiri}, title = {Coefficient estimates for certain classes of meromorphic bi-univalent functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {277--282}, publisher = {Elsevier}, volume = {352}, number = {4}, year = {2014}, doi = {10.1016/j.crma.2014.01.010}, language = {en}, }
TY - JOUR AU - Samaneh G. Hamidi AU - T. Janani AU - G. Murugusundaramoorthy AU - Jay M. Jahangiri TI - Coefficient estimates for certain classes of meromorphic bi-univalent functions JO - Comptes Rendus. Mathématique PY - 2014 SP - 277 EP - 282 VL - 352 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2014.01.010 LA - en ID - CRMATH_2014__352_4_277_0 ER -
%0 Journal Article %A Samaneh G. Hamidi %A T. Janani %A G. Murugusundaramoorthy %A Jay M. Jahangiri %T Coefficient estimates for certain classes of meromorphic bi-univalent functions %J Comptes Rendus. Mathématique %D 2014 %P 277-282 %V 352 %N 4 %I Elsevier %R 10.1016/j.crma.2014.01.010 %G en %F CRMATH_2014__352_4_277_0
Samaneh G. Hamidi; T. Janani; G. Murugusundaramoorthy; Jay M. Jahangiri. Coefficient estimates for certain classes of meromorphic bi-univalent functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 277-282. doi : 10.1016/j.crma.2014.01.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.010/
[1] Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222
[2] An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367
[3] Coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc., Volume 28 (1971), pp. 169-172
[4] Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci. (2013) (Article ID 498159, 4 p)
[5] Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 349-352
[6] Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl., Volume 329 (2007) no. 2, pp. 922-934
[7] Coefficients of meromorphic univalent functions, Kodai Math. Semin. Rep., Volume 28 (1977) no. 2–3, pp. 253-261
[8] Sur un probléme d'extremum de la représentation conforme, Bull. Soc. Math. France, Volume 66 (1938), pp. 48-55
[9] Faber polynomials in the theory of univalent functions, Bull. Amer. Math. Soc., Volume 54 (1948), pp. 503-517
[10] Coefficients of inverses of meromorphic univalent functions, Proc. Amer. Math. Soc., Volume 67 (1977) no. 1, pp. 111-116
[11] The coefficient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc., Volume 70 (1951), pp. 421-450
[12] Coefficient estimates for the inverses of starlike functions represented by symmetric gap series, Panamer. Math. J., Volume 21 (2011) no. 4, pp. 105-123
[13] On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991) no. 1, pp. 268-276 MR1135277 (93d:30023)
Cited by Sources:
Comments - Policy