[Temps minimal de contrôlabilité de deux équations paraboliques avec des domaines de contrôle et de couplage disjoints]
On considère deux équations paraboliques couplées par une matrice
We consider two parabolic equations coupled by a matrix
Accepté le :
Publié le :
Farid Ammar Khodja 1 ; Assia Benabdallah 2 ; Manuel González-Burgos 3 ; Luz de Teresa 4
@article{CRMATH_2014__352_5_391_0, author = {Farid Ammar Khodja and Assia Benabdallah and Manuel Gonz\'alez-Burgos and Luz de Teresa}, title = {Minimal time of controllability of two parabolic equations with disjoint control and coupling domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {391--396}, publisher = {Elsevier}, volume = {352}, number = {5}, year = {2014}, doi = {10.1016/j.crma.2014.03.004}, language = {en}, }
TY - JOUR AU - Farid Ammar Khodja AU - Assia Benabdallah AU - Manuel González-Burgos AU - Luz de Teresa TI - Minimal time of controllability of two parabolic equations with disjoint control and coupling domains JO - Comptes Rendus. Mathématique PY - 2014 SP - 391 EP - 396 VL - 352 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2014.03.004 LA - en ID - CRMATH_2014__352_5_391_0 ER -
%0 Journal Article %A Farid Ammar Khodja %A Assia Benabdallah %A Manuel González-Burgos %A Luz de Teresa %T Minimal time of controllability of two parabolic equations with disjoint control and coupling domains %J Comptes Rendus. Mathématique %D 2014 %P 391-396 %V 352 %N 5 %I Elsevier %R 10.1016/j.crma.2014.03.004 %G en %F CRMATH_2014__352_5_391_0
Farid Ammar Khodja; Assia Benabdallah; Manuel González-Burgos; Luz de Teresa. Minimal time of controllability of two parabolic equations with disjoint control and coupling domains. Comptes Rendus. Mathématique, Volume 352 (2014) no. 5, pp. 391-396. doi : 10.1016/j.crma.2014.03.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.004/
[1] Insensitizing exact controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE's by a single control, Math. Control Signals Systems, Volume 26 (2014) no. 1, pp. 1-46
[2] Indirect controllability of locally coupled systems under geometric conditions, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 7–8, pp. 395-400
[3] Indirect controllability of locally coupled wave-type systems and applications, J. Math. Pures Appl. (9), Volume 99 (2013) no. 5, pp. 544-576
[4] Null-controllability of some reaction–diffusion systems with one control force, J. Math. Anal. Appl., Volume 320 (2006) no. 2, pp. 928-943
[5] Controllability of some systems of parabolic equations, Málaga (2012) http://personal.us.es/manoloburgos/es/conferencias/
[6] A new relation between the condensation index of complex sequences and the null controllability of parabolic systems, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 19–20, pp. 743-746
[7] F. Ammar Khodja, A. Benabdallah, M. González-Burgos, L. de Teresa, Controllability of parabolic systems with disjoint control and coupling domains, in preparation.
[8] Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients, Math. Control Relat. Fields (2014) (in press) | HAL
[9] Controllability of two coupled wave equations on a compact manifold, Arch. Ration. Mech. Anal. (2014) (in press) | HAL
[10] Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 272-292
[11] Boundary controllability of parabolic coupled equations, J. Funct. Anal., Volume 259 (2010) no. 7, pp. 1720-1758
[12] Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Port. Math., Volume 67 (2010) no. 1, pp. 91-113
[13] Unique continuation principle for systems of parabolic equations, ESAIM Control Optim. Calc. Var., Volume 16 (2010) no. 2, pp. 247-274
[14] Exact controllability of a cascade system of conservative equations, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 5–6, pp. 291-296
[15] Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, Volume 25 (2000) no. 1–2, pp. 39-72
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier