Some simple conditions on positive operators A and K ensure that A can be written as a series in the unitary orbit of K.
Des conditions simples sur les opérateurs positifs A et K assurent que A s'écrit comme une série dans l'orbite unitaire de K.
Accepted:
Published online:
Eun-Young Lee 1; Jean-Christophe Bourin 2
@article{CRMATH_2014__352_5_435_0, author = {Eun-Young Lee and Jean-Christophe Bourin}, title = {Sums of unitarily equivalent positive operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {435--439}, publisher = {Elsevier}, volume = {352}, number = {5}, year = {2014}, doi = {10.1016/j.crma.2014.03.012}, language = {en}, }
Eun-Young Lee; Jean-Christophe Bourin. Sums of unitarily equivalent positive operators. Comptes Rendus. Mathématique, Volume 352 (2014) no. 5, pp. 435-439. doi : 10.1016/j.crma.2014.03.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.012/
[1] Sums of Murray–von Neumann equivalent operators, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 19–20, pp. 761-764
[2] Unitary orbits of Hermitian operators with convex or concave functions, Bull. Lond. Math. Soc., Volume 44 (2012) no. 6, pp. 1085-1102
[3] Ellipsoidal tight frames and projection decompositions of operators, Ill. J. Math., Volume 48 (2004), pp. 477-489
[4] Strong sums of projections in von Neumann factors, J. Funct. Anal., Volume 257 (2009), pp. 2497-2529
Cited by Sources:
Comments - Policy