Comptes Rendus
Functional analysis
Sums of unitarily equivalent positive operators
Comptes Rendus. Mathématique, Volume 352 (2014) no. 5, pp. 435-439.

Some simple conditions on positive operators A and K ensure that A can be written as a series in the unitary orbit of K.

Des conditions simples sur les opérateurs positifs A et K assurent que A s'écrit comme une série dans l'orbite unitaire de K.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.03.012

Eun-Young Lee 1; Jean-Christophe Bourin 2

1 Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea
2 Laboratoire de mathématiques, Université de Franche-Comté, 25000 Besançon, France
@article{CRMATH_2014__352_5_435_0,
     author = {Eun-Young Lee and Jean-Christophe Bourin},
     title = {Sums of unitarily equivalent positive operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {435--439},
     publisher = {Elsevier},
     volume = {352},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crma.2014.03.012},
     language = {en},
}
TY  - JOUR
AU  - Eun-Young Lee
AU  - Jean-Christophe Bourin
TI  - Sums of unitarily equivalent positive operators
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 435
EP  - 439
VL  - 352
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2014.03.012
LA  - en
ID  - CRMATH_2014__352_5_435_0
ER  - 
%0 Journal Article
%A Eun-Young Lee
%A Jean-Christophe Bourin
%T Sums of unitarily equivalent positive operators
%J Comptes Rendus. Mathématique
%D 2014
%P 435-439
%V 352
%N 5
%I Elsevier
%R 10.1016/j.crma.2014.03.012
%G en
%F CRMATH_2014__352_5_435_0
Eun-Young Lee; Jean-Christophe Bourin. Sums of unitarily equivalent positive operators. Comptes Rendus. Mathématique, Volume 352 (2014) no. 5, pp. 435-439. doi : 10.1016/j.crma.2014.03.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.012/

[1] J.-C. Bourin; E.-Y. Lee Sums of Murray–von Neumann equivalent operators, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 19–20, pp. 761-764

[2] J.-C. Bourin; E.-Y. Lee Unitary orbits of Hermitian operators with convex or concave functions, Bull. Lond. Math. Soc., Volume 44 (2012) no. 6, pp. 1085-1102

[3] K. Dykema; D. Freeman; K. Kornelson; D. Larson; M. Ordower; E. Weber Ellipsoidal tight frames and projection decompositions of operators, Ill. J. Math., Volume 48 (2004), pp. 477-489

[4] V. Kaftal; P.W. Ng; S. Zhang Strong sums of projections in von Neumann factors, J. Funct. Anal., Volume 257 (2009), pp. 2497-2529

Cited by Sources:

Comments - Policy