Comptes Rendus
Probability theory
Vertex-reinforced random walk on Z with sub-square-root weights is recurrent
Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 521-524.

We prove that vertex-reinforced random walk on Z with weight of order kα, for α[0,1/2), is recurrent. This confirms a conjecture of Volkov for α<1/2. The conjecture for α[1/2,1) remains open.

On démontre que toute marche aléatoire renforcée par sommets sur Z avec poids de l'ordre de kα, pour α[0,1/2), est récurrente. Ce résultat confirme une conjecture de Volkov pour α<1/2. La conjecture reste ouverte pour α[1/2,1).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.03.019

Jun Chen 1; Gady Kozma 2

1 Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
2 Faculty of Mathematics and Computer Science, Weizmann Institute of Science, POB 26, 76100, Rehovot, Israel
@article{CRMATH_2014__352_6_521_0,
     author = {Jun Chen and Gady Kozma},
     title = {Vertex-reinforced random walk on $ \mathbb{Z}$ with sub-square-root weights is recurrent},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {521--524},
     publisher = {Elsevier},
     volume = {352},
     number = {6},
     year = {2014},
     doi = {10.1016/j.crma.2014.03.019},
     language = {en},
}
TY  - JOUR
AU  - Jun Chen
AU  - Gady Kozma
TI  - Vertex-reinforced random walk on $ \mathbb{Z}$ with sub-square-root weights is recurrent
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 521
EP  - 524
VL  - 352
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2014.03.019
LA  - en
ID  - CRMATH_2014__352_6_521_0
ER  - 
%0 Journal Article
%A Jun Chen
%A Gady Kozma
%T Vertex-reinforced random walk on $ \mathbb{Z}$ with sub-square-root weights is recurrent
%J Comptes Rendus. Mathématique
%D 2014
%P 521-524
%V 352
%N 6
%I Elsevier
%R 10.1016/j.crma.2014.03.019
%G en
%F CRMATH_2014__352_6_521_0
Jun Chen; Gady Kozma. Vertex-reinforced random walk on $ \mathbb{Z}$ with sub-square-root weights is recurrent. Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 521-524. doi : 10.1016/j.crma.2014.03.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.019/

[1] Burgess Davis Reinforced random walk, Probab. Theory Relat. Fields, Volume 84 (1990) no. 2, pp. 203-229 springer.com (Available at:)

[2] Gideon Amir, Itai Benjamini, Ori Gurel-Gurevich, Gady Kozma, Random walk in changing environment, unpublished manuscript, circa 2006.

[3] Robin Pemantle Vertex-reinforced random walk, Probab. Theory Relat. Fields, Volume 92 (1992) no. 1, pp. 117-136 springer.com upenn.edu/~pemantle (Available at:)

[4] Robin Pemantle; Stanislav Volkov Vertex-reinforced random walk on Z has finite range, Ann. Probab., Volume 27 (1999) no. 3, pp. 1368-1388 projecteuclid.org (Available at:)

[5] Bruno Schapira A 0–1 law for vertex-reinforced random walks on Z with weight of order kα, α<1/2, Electron. Commun. Probab., Volume 17 (2012) no. 22 ejpecp.org (Available at:)

[6] Arvind Singh Recurrence for vertex-reinforced random walks on Z with weak reinforcements, 2014 (Available at:) | arXiv

[7] Pierre Tarrès Vertex-reinforced random walk on Z eventually gets stuck on five points, Ann. Probab., Volume 32 (2004) no. 3B, pp. 2650-2701 projecteuclid.org (Available at:)

[8] Stanislav Volkov Phase transition in vertex-reinforced random walks on Z with non-linear reinforcement, J. Theor. Probab., Volume 19 (2006) no. 3, pp. 691-700 springer.com lth.se/.../s.volkov (Available at:)

Cited by Sources:

Comments - Policy