[Récurrence d'une marche aléatoire renforcée par sommets sur
On démontre que toute marche aléatoire renforcée par sommets sur
We prove that vertex-reinforced random walk on
Accepté le :
Publié le :
Jun Chen 1 ; Gady Kozma 2
@article{CRMATH_2014__352_6_521_0, author = {Jun Chen and Gady Kozma}, title = {Vertex-reinforced random walk on $ \mathbb{Z}$ with sub-square-root weights is recurrent}, journal = {Comptes Rendus. Math\'ematique}, pages = {521--524}, publisher = {Elsevier}, volume = {352}, number = {6}, year = {2014}, doi = {10.1016/j.crma.2014.03.019}, language = {en}, }
TY - JOUR AU - Jun Chen AU - Gady Kozma TI - Vertex-reinforced random walk on $ \mathbb{Z}$ with sub-square-root weights is recurrent JO - Comptes Rendus. Mathématique PY - 2014 SP - 521 EP - 524 VL - 352 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2014.03.019 LA - en ID - CRMATH_2014__352_6_521_0 ER -
Jun Chen; Gady Kozma. Vertex-reinforced random walk on $ \mathbb{Z}$ with sub-square-root weights is recurrent. Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 521-524. doi : 10.1016/j.crma.2014.03.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.019/
[1] Reinforced random walk, Probab. Theory Relat. Fields, Volume 84 (1990) no. 2, pp. 203-229 springer.com (Available at:)
[2] Gideon Amir, Itai Benjamini, Ori Gurel-Gurevich, Gady Kozma, Random walk in changing environment, unpublished manuscript, circa 2006.
[3] Vertex-reinforced random walk, Probab. Theory Relat. Fields, Volume 92 (1992) no. 1, pp. 117-136 springer.com upenn.edu/~pemantle (Available at:)
[4] Vertex-reinforced random walk on
[5] A 0–1 law for vertex-reinforced random walks on
[6] Recurrence for vertex-reinforced random walks on
[7] Vertex-reinforced random walk on
[8] Phase transition in vertex-reinforced random walks on
Cité par Sources :
Commentaires - Politique