Comptes Rendus
Probability theory/Mathematical economics
Symmetries of the backward heat equation with potential and interest rate models
Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 525-528.

We compute the isovector algebra of the Hamilton–Jacobi–Bellman equation when the potential belongs to a class that strictly includes quadratic potentials, and then determine a canonical basis for it. This setting allows us to parameterize canonically the important class of one factor interest rate models.

Nous calculons l'algèbre des isovecteurs de l'équation de Hamilton–Jacobi–Bellman lorsque le potentiel appartient à une certaine classe, qui inclut strictement celle des potentiels quadratiques, et en déterminons ensuite une base canonique. Ce cadre nous permet de paramétrer canoniquement l'importante classe des modèles affines de taux d'intérêt à un facteur.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.03.024

Paul Lescot 1; Hélène Quintard 1

1 Normandie Université, Université de Rouen, Laboratoire de Mathématiques Raphaël-Salem, CNRS, UMR 6085, avenue de l'Université, BP 12, 76801 Saint-Étienne-du-Rouvray cedex, France
@article{CRMATH_2014__352_6_525_0,
     author = {Paul Lescot and H\'el\`ene Quintard},
     title = {Symmetries of the backward heat equation with potential and interest rate models},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {525--528},
     publisher = {Elsevier},
     volume = {352},
     number = {6},
     year = {2014},
     doi = {10.1016/j.crma.2014.03.024},
     language = {en},
}
TY  - JOUR
AU  - Paul Lescot
AU  - Hélène Quintard
TI  - Symmetries of the backward heat equation with potential and interest rate models
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 525
EP  - 528
VL  - 352
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2014.03.024
LA  - en
ID  - CRMATH_2014__352_6_525_0
ER  - 
%0 Journal Article
%A Paul Lescot
%A Hélène Quintard
%T Symmetries of the backward heat equation with potential and interest rate models
%J Comptes Rendus. Mathématique
%D 2014
%P 525-528
%V 352
%N 6
%I Elsevier
%R 10.1016/j.crma.2014.03.024
%G en
%F CRMATH_2014__352_6_525_0
Paul Lescot; Hélène Quintard. Symmetries of the backward heat equation with potential and interest rate models. Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 525-528. doi : 10.1016/j.crma.2014.03.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.024/

[1] B.K. Harrison; F.B. Estabrook Geometric approach to invariance groups and solution of partial differential systems, J. Math. Phys., Volume 12 (1971), pp. 653-666

[2] J. Lafontaine Introduction aux variétés différentielles, Collection Grenoble Sciences, Presses universitaires de Grenoble, 1996

[3] B. Leblanc; O. Scaillet Path-dependent options on yields in the affine term structure model, Finance Stoch., Volume 2 (1998) no. 4, pp. 349-367

[4] P. Lescot Symmetries of the Black–Scholes equation, Methods Appl. Anal., Volume 19 (2012), pp. 147-160

[5] P. Lescot; J.-C. Zambrini Isovectors for the Hamilton–Jacobi–Bellman equation, formal stochastic differentials and first integrals in Euclidean quantum mechanics, Seminar on Stochastic Analysis, Random Fields and Applications IV, Progr. Probab., vol. 58, Birkhäuser, Basel, 2004, pp. 187-202

[6] P. Lescot; J.-C. Zambrini Probabilistic deformation of contact geometry, diffusion processes and their quadratures, Seminar on Stochastic Analysis, Random Fields and Applications V, Progr. Probab., vol. 59, Birkhäuser, Basel, 2008, pp. 203-226

[7] P. Lescot, H. Quintard, J.-C. Zambrini, Solving stochastic differential equations with Cartan's exterior differential system, in preparation.

[8] M. Thieullen; J.-C. Zambrini Symmetries in the stochastic calculus of variation, Probab. Theory Relat. Fields, Volume 107 (1997), pp. 401-427

[9] J.-C. Zambrini Euclidean quantum mechanics, Phys. Rev. A, Volume 35 (1987) no. 9, pp. 3630-3649

Cited by Sources:

Comments - Policy