Comptes Rendus
Complex analysis
Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions
Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 479-484.

In this work, considering a general subclass of analytic bi-univalent functions, we determine estimates for the general Taylor–Maclaurin coefficients of the functions in this class. For this purpose, we use the Faber polynomial expansions. In certain cases, our estimates improve some of those existing coefficient bounds.

Dans cette Note, nous considérons une sous-classe générale de fonctions analytiques bi-univalentes, pour lesquelles nous établissons des estimations du coefficient général de Taylor–Maclaurin. Nous utilisons à cet effet des développements en polynômes de Faber. Dans certains cas, nos estimations améliorent des bornes existantes sur les coefficients de ces fonctions.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.04.004

Serap Bulut 1

1 Kocaeli University, Civil Aviation College, Arslanbey Campus, 41285 İzmit-Kocaeli, Turkey
@article{CRMATH_2014__352_6_479_0,
     author = {Serap Bulut},
     title = {Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {479--484},
     publisher = {Elsevier},
     volume = {352},
     number = {6},
     year = {2014},
     doi = {10.1016/j.crma.2014.04.004},
     language = {en},
}
TY  - JOUR
AU  - Serap Bulut
TI  - Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 479
EP  - 484
VL  - 352
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2014.04.004
LA  - en
ID  - CRMATH_2014__352_6_479_0
ER  - 
%0 Journal Article
%A Serap Bulut
%T Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions
%J Comptes Rendus. Mathématique
%D 2014
%P 479-484
%V 352
%N 6
%I Elsevier
%R 10.1016/j.crma.2014.04.004
%G en
%F CRMATH_2014__352_6_479_0
Serap Bulut. Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 479-484. doi : 10.1016/j.crma.2014.04.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.04.004/

[1] H. Airault; A. Bouali Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222

[2] M.K. Aouf; R.M. El-Ashwah; A.M. Abd-Eltawab New subclasses of biunivalent functions involving Dziok–Srivastava operator, ISRN Math. Anal. (2013) (Article ID 387178, 5 p)

[3] H. Airault; J. Ren An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367

[4] Durham, July 1–20, 1979 (1980)

[5] D.A. Brannan; T.S. Taha; D.A. Brannan; T.S. Taha, Kuwait, February 18–21, 1985 (KFAS Proc. Ser.), Volume vol. 3 (1988) no. 2, pp. 53-60 (see also Stud. Univ. Babeş–Bolyai, Math., 31, 1986, pp. 70-77)

[6] S. Bulut Coefficient estimates for initial Taylor–Maclaurin coefficients for a subclass of analytic and bi-univalent functions defined by Al-Oboudi differential operator, Sci. World J. (2013) (Article ID 171039, 6 p)

[7] S. Bulut Coefficient estimates for new subclasses of analytic and bi-univalent functions defined by Al-Oboudi differential operator, J. Funct. Spaces Appl. (2013) (Article ID 181932, 7 p)

[8] S. Bulut, Coefficient estimates for a new subclass of analytic and bi-univalent functions, Ann. Alexandru Ioan Cuza Univ., Math., in press.

[9] S. Bulut Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., Volume 43 (2013) no. 2, pp. 59-65

[10] M. Çağlar; H. Orhan; N. Yağmur Coefficient bounds for new subclasses of bi-univalent functions, Filomat, Volume 27 (2013) no. 7, pp. 1165-1171

[11] P.L. Duren Univalent Functions, Grundlehren Math. Wiss., vol. 259, Springer, New York, 1983

[12] G. Faber Über polynomische Entwickelungen, Math. Ann., Volume 57 (1903) no. 3, pp. 389-408

[13] B.A. Frasin; M.K. Aouf New subclasses of bi-univalent functions, Appl. Math. Lett., Volume 24 (2011), pp. 1569-1573

[14] S.P. Goyal; P. Goswami Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egypt. Math. Soc., Volume 20 (2012), pp. 179-182

[15] S.G. Hamidi; S.A. Halim; J.M. Jahangiri Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 9–10, pp. 349-352

[16] S.G. Hamidi; J.M. Jahangiri Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 1, pp. 17-20

[17] S.G. Hamidi; T. Janani; G. Murugusundaramoorthy; J.M. Jahangiri Coefficient estimates for certain classes of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 4, pp. 277-282

[18] T. Hayami; S. Owa Coefficient bounds for bi-univalent functions, Panam. Math. J., Volume 22 (2012) no. 4, pp. 15-26

[19] J.M. Jahangiri; S.G. Hamidi Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. (2013) (Article ID 190560, 4 p)

[20] J.M. Jahangiri; S.G. Hamidi; S.A. Halim Coefficients of bi-univalent functions with positive real part derivatives http://math.usm.my/bulletin/pdf/acceptedpapers/2013-04-050-R1.pdf (Bull. Malays. Math. Soc., in press)

[21] M. Lewin On a coefficient problem for bi-univalent functions, Proc. Am. Math. Soc., Volume 18 (1967), pp. 63-68

[22] G. Murugusundaramoorthy; N. Magesh; V. Prameela Coefficient bounds for certain subclasses of bi-univalent function, Abstr. Appl. Anal. (2013) (Article ID 573017, 3 p)

[23] E. Netanyahu The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1, Arch. Ration. Mech. Anal., Volume 32 (1969), pp. 100-112

[24] S. Porwal; M. Darus On a new subclass of bi-univalent functions, J. Egypt. Math. Soc., Volume 21 (2013) no. 3, pp. 190-193

[25] S. Prema; B.S. Keerthi Coefficient bounds for certain subclasses of analytic functions, J. Math. Anal., Volume 4 (2013) no. 1, pp. 22-27

[26] H.M. Srivastava; S. Bulut; M. Çağlar; N. Yağmur Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, Volume 27 (2013) no. 5, pp. 831-842

[27] H.M. Srivastava; A.K. Mishra; P. Gochhayat Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010), pp. 1188-1192

[28] T.S. Taha Topics in univalent function theory, University of London, 1981 (PhD thesis)

[29] P.G. Todorov On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991) no. 1, pp. 268-276

[30] Q.-H. Xu; Y.-C. Gui; H.M. Srivastava Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., Volume 25 (2012), pp. 990-994

[31] Q.-H. Xu; H.-G. Xiao; H.M. Srivastava A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., Volume 218 (2012), pp. 11461-11465

Cited by Sources:

Comments - Policy