Comptes Rendus
Logic/Geometry
The six Grothendieck operations on o-minimal sheaves
Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 455-458.

In this note, we report on our work on the formalism of the Grothendieck six operations on o-minimal sheaves. As an application to the theory of definable groups, we see that the cohomology of a definably compact group with coefficients in a field is a connected, bounded, Hopf algebra of finite type.

Dans cette note, nous esquissons notre travail sur le formalisme des six opérations de Grothendieck sur les faisceaux o-minimaux. En tant qu'application à la théorie des groupes définissables, nous montrons que la cohomologie d'un groupe définissablement compact avec coefficients dans un corps est une algèbre de Hopf connexe, bornée, de type fini.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.03.021

Mário J. Edmundo 1, 2; Luca Prelli 2

1 Universidade Aberta, Campus do Tagus Park, Edifício Inovação I, Av. Dr. Jaques Delors, 2740-122 Porto Salvo, Oeiras, Portugal
2 CMAF Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
@article{CRMATH_2014__352_6_455_0,
     author = {M\'ario J. Edmundo and Luca Prelli},
     title = {The six {Grothendieck} operations on o-minimal sheaves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {455--458},
     publisher = {Elsevier},
     volume = {352},
     number = {6},
     year = {2014},
     doi = {10.1016/j.crma.2014.03.021},
     language = {en},
}
TY  - JOUR
AU  - Mário J. Edmundo
AU  - Luca Prelli
TI  - The six Grothendieck operations on o-minimal sheaves
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 455
EP  - 458
VL  - 352
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2014.03.021
LA  - en
ID  - CRMATH_2014__352_6_455_0
ER  - 
%0 Journal Article
%A Mário J. Edmundo
%A Luca Prelli
%T The six Grothendieck operations on o-minimal sheaves
%J Comptes Rendus. Mathématique
%D 2014
%P 455-458
%V 352
%N 6
%I Elsevier
%R 10.1016/j.crma.2014.03.021
%G en
%F CRMATH_2014__352_6_455_0
Mário J. Edmundo; Luca Prelli. The six Grothendieck operations on o-minimal sheaves. Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 455-458. doi : 10.1016/j.crma.2014.03.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.021/

[1] A. Berarducci Cohomology of groups in o-minimal structures: acyclicity of the infinitesimal subgroup, J. Symb. Log., Volume 74 (2009) no. 3, pp. 891-900

[2] G. Bredon Sheaf Theory, Grad. Texts Math., vol. 170, Springer-Verlag, New York, 1997

[3] H. Delfs Homology of Locally Semialgebraic Spaces, Lect. Notes Math., vol. 1484, Springer-Verlag, Berlin, 1991

[4] L. van den Dries Tame Topology and o-Minimal Structures, Lond. Math. Soc. Lect. Note Ser., vol. 248, Cambridge University Press, Cambridge, UK, 1998

[5] M. Edmundo; G. Jones; N. Peatfield Sheaf cohomology in o-minimal structures, J. Math. Log., Volume 6 (2006) no. 2, pp. 163-179

[6] M. Edmundo; M. Otero Definably compact Abelian groups, J. Math. Log., Volume 4 (2004) no. 2, pp. 163-180

[7] M. Edmundo; L. Prelli Poincaré–Verdier duality in o-minimal structures, Ann. Inst. Fourier Grenoble, Volume 60 (2010) no. 4, pp. 1259-1288

[8] M. Edmundo; L. Prelli Invariance of o-minimal cohomology with definably compact supports | arXiv

[9] M. Kashiwara; P. Schapira Sheaves on Manifolds, Grundlehren Math. Wiss., vol. 292, Springer-Verlag, Berlin, 1990

[10] M. Kashiwara; P. Schapira Ind-sheaves, Astérisque, Volume 271 (2001)

[11] M. Kashiwara; P. Schapira Categories and Sheaves, Grundlehren Math. Wiss., vol. 332, Springer-Verlag, Berlin, 2006

[12] M. Otero A survey on groups definable in o-minimal structures (Z. Chatzidakis; D. Macpherson; A. Pillay; A. Wilkie, eds.), Model Theory with Applications to Algebra and Analysis, vol. 2, Lond. Math. Soc. Lect. Note Ser., vol. 350, Cambridge University Press, Cambridge, UK, 2008, pp. 177-206

[13] Y. Peterzil; C. Steinhorn Definable compacteness and definable subgroups of o-minimal groups, J. Lond. Math. Soc., Volume 59 (1999) no. 2, pp. 769-786

[14] A. Pillay Sheaves of continuous definable functions, J. Symb. Log., Volume 53 (1988) no. 4, pp. 1165-1169

[15] L. Prelli Sheaves on subanalytic sites, Rend. Semin. Mat. Univ. Padova, Volume 120 (2008), pp. 167-216

Cited by Sources:

The first author was supported by Fundação para a Ciência e a Tecnologia, Financiamento Base 2008 – ISFL/1/209. The second author is a member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and was supported by Marie Curie grant PIEF-GA-2010-272021. This work is part of the FCT project PTDC/MAT/101740/2008.

Comments - Policy