Let X be a smooth projective variety over an algebraically closed field k of characteristic of and Picard number . Suppose that X satisfies for any ample line bundle on X, and any nonnegative integers with , where is the absolute Frobenius morphism. Let Y be a smooth variety obtained from X by taking hyperplane sections of dim ≥3 and cyclic covers along smooth divisors. If the canonical bundle is ample (resp. nef), then we prove that is strongly stable (resp. strongly semistable) with respect to any polarization.
Soit X une varieté projective lisse sur un corps algébriquement clos k de caractéristique de dimension et avec nombre de Picard . Supposons que X satisfasse pour tout fibré en droite ample sur X et tous nombres entiers tels que , où est le morphisme de Frobenius absolu. Soit Y une varieté lisse obtenue par X en prenant des sections hyperplanes lisses de dimension ≥3 et des revêtements cycliques le long des diviseurs lisses. Si le fibré canonique est ample (resp. nef), alors on montre que est fortement stable (resp. fortement semistable) par rapport à n'importe quelle polarisation.
Accepted:
Published online:
Lingguang Li 1; Junchao Shentu 2
@article{CRMATH_2014__352_7-8_639_0, author = {Lingguang Li and Junchao Shentu}, title = {Strong stability of cotangent bundles of cyclic covers}, journal = {Comptes Rendus. Math\'ematique}, pages = {639--644}, publisher = {Elsevier}, volume = {352}, number = {7-8}, year = {2014}, doi = {10.1016/j.crma.2014.04.011}, language = {en}, }
Lingguang Li; Junchao Shentu. Strong stability of cotangent bundles of cyclic covers. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 639-644. doi : 10.1016/j.crma.2014.04.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.04.011/
[1] Tangent bundle of a complete intersection, Trans. Amer. Math. Soc., Volume 362 (2010) no. 6, pp. 3149-3160
[2] Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), Adv. Stud. Pure Math., vol. 2, North-Holland Publishing Co./Masson & Cie, Amsterdam/Paris, 1968
[3] Kodaira–Akizuki–Nakano vanishing: a variant, Bull. Lond. Math. Soc., Volume 32 (2000) no. 2, pp. 171-176
[4] Instability of truncated symmetric powers of sheaves, J. Algebra, Volume 386 (2013), pp. 176-189
[5] Stability of Frobenius pull-backs of tangent bundles and generic injectivity of Gauss maps in positive characteristic, Compos. Math., Volume 106 (1997), pp. 61-70
[6] Stability of Frobenius pull-backs of tangent bundles of weighted complete intersections, Math. Nachr., Volume 221 (2001), pp. 87-93
[7] On the stability of tangent bundles of Fano manifolds, J. Algebr. Geom., Volume 4 (1995), pp. 363-384
[8] Direct images of bundles under Frobenius morphisms, Invent. Math., Volume 173 (2008) no. 2, pp. 427-447
[9] Stability of sheaves of locally closed and exact forms, J. Algebra, Volume 324 (2010), pp. 1471-1482
Cited by Sources:
☆ The first author is supported by the National Natural Science Foundation of China (No. 11271275).
Comments - Policy