Comptes Rendus
Harmonic analysis
Universal sampling, quasicrystals and bounded remainder sets
Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 633-638.

We examine the result due to Matei and Meyer that simple quasicrystals are universal sampling sets, in the critical case when the density of the sampling set is equal to the measure of the spectrum. We show that in this case, an arithmetical condition on the quasicrystal determines whether it is a universal set of “stable and non-redundant” sampling.

Nous examinons le résultat, dû à Matei et à Meyer, selon lequel les quasicristaux simples sont des ensembles d'échantillonnage universel, dans le cas critique où la densité de l'ensemble d'échantillonnage est égale à la mesure du spectre. Nous montrons que, dans ce cas, une condition arithmétique sur le quasicristal détermine s'il s'agit d'un ensemble universel d'échantillonnage « stable et non redondant ».

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.05.006

Sigrid Grepstad 1; Nir Lev 2

1 Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
2 Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel
@article{CRMATH_2014__352_7-8_633_0,
     author = {Sigrid Grepstad and Nir Lev},
     title = {Universal sampling, quasicrystals and bounded remainder sets},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {633--638},
     publisher = {Elsevier},
     volume = {352},
     number = {7-8},
     year = {2014},
     doi = {10.1016/j.crma.2014.05.006},
     language = {en},
}
TY  - JOUR
AU  - Sigrid Grepstad
AU  - Nir Lev
TI  - Universal sampling, quasicrystals and bounded remainder sets
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 633
EP  - 638
VL  - 352
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2014.05.006
LA  - en
ID  - CRMATH_2014__352_7-8_633_0
ER  - 
%0 Journal Article
%A Sigrid Grepstad
%A Nir Lev
%T Universal sampling, quasicrystals and bounded remainder sets
%J Comptes Rendus. Mathématique
%D 2014
%P 633-638
%V 352
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2014.05.006
%G en
%F CRMATH_2014__352_7-8_633_0
Sigrid Grepstad; Nir Lev. Universal sampling, quasicrystals and bounded remainder sets. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 633-638. doi : 10.1016/j.crma.2014.05.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.05.006/

[1] S.A. Avdonin On the question of Riesz bases of exponential functions in L2, Vestn. Leningr. Univ., Volume 13 (1974), pp. 5-12 (in Russian). English translation in Vestn. Leningr. Univ., Math., 7, 1979, pp. 203-211

[2] A. Beurling Balayage of Fourier–Stieltjes transforms, The Collected Works of Arne Beurling, vol. 2, Harmonic Analysis, Birkhäuser, Boston, 1989

[3] V. Boltianski Hilbert's Third Problem, Wiley, 1978

[4] S. Grepstad; N. Lev Multi-tiling and Riesz bases, Adv. Math., Volume 252 (2014), pp. 1-6

[5] S. Grepstad; N. Lev Sets of bounded discrepancy for multi-dimensional irrational rotation, 2014 (preprint) | arXiv

[6] S.V. Hruščev; N.K. Nikol'skii; B.S. Pavlov Unconditional bases of exponentials and of reproducing kernels, Leningrad, 1979/1980 (Lect. Notes Math.), Volume vol. 864, Springer, Berlin (1981), pp. 214-335

[7] J.-P. Kahane Sur les fonctions moyenne-périodiques bornées, Ann. Inst. Fourier, Volume 7 (1957), pp. 293-314

[8] G. Kozma; N. Lev Exponential Riesz bases, discrepancy of irrational rotations and BMO, J. Fourier Anal. Appl., Volume 17 (2011), pp. 879-898

[9] H.J. Landau Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., Volume 117 (1967), pp. 37-52

[10] N. Lev Riesz bases of exponentials on multiband spectra, Proc. Am. Math. Soc., Volume 140 (2012), pp. 3127-3132

[11] B. Matei; Y. Meyer Quasicrystals are sets of stable sampling, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008), pp. 1235-1238

[12] B. Matei; Y. Meyer Simple quasicrystals are sets of stable sampling, Complex Var. Elliptic Equ., Volume 55 (2010), pp. 947-964

[13] S. Nitzan; A. Olevskii Revisiting Landau's density theorems for Paley–Wiener spaces, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012), pp. 509-512

[14] A. Olevskii; A. Ulanovskii Universal sampling of band-limited signals, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 927-931

[15] A. Olevskii; A. Ulanovskii Universal sampling and interpolation of band-limited signals, Geom. Funct. Anal., Volume 18 (2008), pp. 1029-1052

[16] A. Olevskii; A. Ulanovskii On multi-dimensional sampling and interpolation, Anal. Math. Phys., Volume 2 (2012), pp. 149-170

[17] R.M. Young An Introduction to Nonharmonic Fourier Series, Academic Press, Orlando, FL, 2001

Cited by Sources:

Research partially supported by the Israel Science Foundation Grant No. 225/13.

Comments - Policy