We prove the existence and stability of Cantor families of quasi-periodic, small-amplitude solutions of quasi-linear autonomous Hamiltonian perturbations of KdV.
Nous prouvons l'existence de solutions quasi périodiques linéairement stables pour des perturbations hamiltoniennes autonomes quasi linéaires de l'équation KdV.
Accepted:
Published online:
Pietro Baldi 1; Massimiliano Berti 2; Riccardo Montalto 2
@article{CRMATH_2014__352_7-8_603_0, author = {Pietro Baldi and Massimiliano Berti and Riccardo Montalto}, title = {KAM for quasi-linear {KdV}}, journal = {Comptes Rendus. Math\'ematique}, pages = {603--607}, publisher = {Elsevier}, volume = {352}, number = {7-8}, year = {2014}, doi = {10.1016/j.crma.2014.04.012}, language = {en}, }
Pietro Baldi; Massimiliano Berti; Riccardo Montalto. KAM for quasi-linear KdV. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 603-607. doi : 10.1016/j.crma.2014.04.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.04.012/
[1] Periodic solutions of fully nonlinear autonomous equations of Benjamin–Ono type, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013), pp. 33-77
[2] KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., Volume 359 (2014), pp. 471-536 | DOI
[3] KAM for autonomous quasi-linear perturbations of KdV, 2014 (preprint) | arXiv
[4] M. Berti, P. Bolle, A Nash–Moser approach to KAM theory, preprint, 2014.
[5] Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal., Volume 177 (2005) no. 3, pp. 367-478
[6] KdV and KAM, Springer, 2003
[7] A KAM theorem for equations of the Korteweg–de Vries type, Rev. Math. Math. Phys., Volume 10 (1998) no. 3, pp. 1-64
[8] Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and Applications, vol. 19, Oxford University Press, 2000
[9] A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., Volume 307 (2011) no. 3, pp. 629-673
[10] Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., Volume 71 (1996) no. 2, pp. 269-296
[11] A normal form for the Schrödinger equation with analytic non-linearities, Commun. Math. Phys., Volume 312 (2012), pp. 501-557
Cited by Sources:
Comments - Policy