We formulate the question of the existence of spatially periodic, time-periodic solutions for evolution equations as a fixed point problem, for certain temporal periods. We prove that if a certain estimate applies for the Duhamel integral, then time-periodic solutions cannot be arbitrarily small. This provides a partial analogue in the spatially periodic case of scattering results for dispersive equations on the real line, as scattering implies the non-existence of small-amplitude traveling waves. Furthermore, it also complements small-divisor methods (e.g., the Craig–Wayne–Bourgain method) for proving the existence of small-amplitude time-periodic solutions (again, for frequencies in certain set).
Nous exprimons le problème d'existence de solutions périodiques en temps et en espace d'opérateurs d'évolution sous forme de problèmes de points fixes, pour certaines périodes de temps. Nous prouvons que, si une certaine estimation pour l'integrale de Duhamel existe, alors les solutions périodiques en temps ne peuvent être arbitrairement petites. Cela donne des résultats analogues pour le cas de la diffusion d'ondes périodiques dans l'espace sur la droite réelle, puisque la diffusion implique la non-existence d'onde de petites amplitudes. De plus, nos résultats viennent compléter les méthodes des petits diviseurs (comme par exemple la méthode de Craig–Wayne–Bourgain) pour prouver l'existence de solutions périodiques en temps de petites amplitudes (pour des frequences dans un certain ensemble).
Accepted:
Published online:
David M. Ambrose 1; J. Douglas Wright 1
@article{CRMATH_2014__352_7-8_597_0, author = {David M. Ambrose and J. Douglas Wright}, title = {Non-existence of small-amplitude doubly periodic waves for dispersive equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {597--602}, publisher = {Elsevier}, volume = {352}, number = {7-8}, year = {2014}, doi = {10.1016/j.crma.2014.05.003}, language = {en}, }
TY - JOUR AU - David M. Ambrose AU - J. Douglas Wright TI - Non-existence of small-amplitude doubly periodic waves for dispersive equations JO - Comptes Rendus. Mathématique PY - 2014 SP - 597 EP - 602 VL - 352 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2014.05.003 LA - en ID - CRMATH_2014__352_7-8_597_0 ER -
David M. Ambrose; J. Douglas Wright. Non-existence of small-amplitude doubly periodic waves for dispersive equations. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 597-602. doi : 10.1016/j.crma.2014.05.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.05.003/
[1] Global paths of time-periodic solutions of the Benjamin–Ono equation connecting pairs of traveling waves, Commun. Appl. Math. Comput. Sci., Volume 4 (2009), pp. 177-215
[2] Computation of time-periodic solutions of the Benjamin–Ono equation, J. Nonlinear Sci., Volume 20 (2010) no. 3, pp. 277-308
[3] Periodic solutions of fully nonlinear autonomous equations of Benjamin–Ono type, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013) no. 1, pp. 33-77
[4] Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Int. Math. Res. Not., Volume 1994 (1994) no. 11, p. 475 ff., approx. 21 pp. (electronic)
[5] Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal., Volume 5 (1995) no. 4, pp. 629-639
[6] Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation, J. Funct. Anal., Volume 100 (1991) no. 1, pp. 87-109
[7] Newton's method and periodic solutions of nonlinear wave equations, Commun. Pure Appl. Math., Volume 46 (1993) no. 11, pp. 1409-1498
[8] Variational methods for quasi-periodic solutions of partial differential equations, Pátzcuaro, 1998 (World Sci. Monogr. Ser. Math.), Volume vol. 6, World Sci. Publ., River Edge, NJ (2000), pp. 214-228
[9] A periodic problem for the Korteweg–de Vries equation in a class of short-range potentials, Funkcional. Anal. Priložen., Volume 9 (1975) no. 3, pp. 41-51
[10] Validity of the Korteweg–de Vries approximation for the two-dimensional water wave problem in the arc length formulation, Commun. Pure Appl. Math., Volume 65 (2012) no. 3, pp. 381-429
[11] Global smoothing for the periodic KdV evolution, Int. Math. Res. Not., Volume 2013 (2013) no. 20, pp. 4589-4614
[12] Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., Volume 62 (2002) no. 4, pp. 1437-1462 (electronic)
[13] Critical exponents and collapse of nonlinear Schrödinger equations with anisotropic fourth-order dispersion, Nonlinearity, Volume 16 (2003) no. 5, pp. 1809-1821
[14] Scattering theory in the energy space for a class of nonlinear Schrödinger equations, Trieste, 1984 (Pitman Res. Notes Math. Ser.), Volume vol. 141, Longman Sci. Tech., Harlow (1986), pp. 110-120
[15] Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal., Volume 177 (2005) no. 3, pp. 367-478
[16] Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Physica D, Volume 144 (2000) no. 1–2, pp. 194-210
[17] Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., Volume 40 (1991) no. 1, pp. 33-69
[18] On the smoothing properties of solutions to the modified Korteweg–de Vries equation, J. Differ. Equ., Volume 106 (1993) no. 1, pp. 141-154
[19] Decay and scattering of small solutions of a generalized Boussinesq equation, J. Funct. Anal., Volume 147 (1997) no. 1, pp. 51-68
[20] New representations of multiperiodic and multisoliton solutions for a class of nonlocal soliton equations, J. Phys. Soc. Jpn., Volume 73 (2004) no. 12, pp. 3285-3293
[21] Nash–Moser theory for standing water waves, Arch. Ration. Mech. Anal., Volume 159 (2001) no. 1, pp. 1-83
[22] Nonlinear small data scattering for the generalized Korteweg–de Vries equation, J. Funct. Anal., Volume 90 (1990) no. 2, pp. 445-457
[23] Dispersion of low-energy waves for two conservative equations, Arch. Ration. Mech. Anal., Volume 55 (1974), pp. 86-92
[24] Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys., Volume 127 (1990) no. 3, pp. 479-528
[25] An infinite branching hierarchy of time-periodic solutions of the Benjamin–Ono equation, 2008 | arXiv
Cited by Sources:
Comments - Policy