Comptes Rendus
Partial differential equations/Calculus of variations
Topological gradient for fourth-order PDE and application to the detection of fine structures in 2D images
Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 609-613.

In this paper we describe a new approach for the detection of fine structures in an image. This approach is based on the computation of the topological gradient associated with a cost function defined from a regularization of the data (possibly noisy). We get this approximation by solving a fourth-order PDE. The study of the topological sensitivity is made in the cases of both a circular inclusion and a crack. We illustrate our approach by giving two experimental results.

Dans cette note, on décrit une nouvelle approche pour la détection de structures fines dans une image. Cette approche est basée sur le calcul du gradient topologique associé à une fonction coût définie à partir des dérivées secondes d'une régularisation des données (éventuellement bruitées). Cette régularisation est obtenue via la résolution d'une EDP du quatrième ordre. L'étude de la sensibilité topologique est faite dans les cas d'une inclusion circulaire et d'un crack. Nous illustrons notre approche en donnant deux résultats expérimentaux.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.06.005

Gilles Aubert 1; Audric Drogoul 1

1 Université Nice Sophia Antipolis, CNRS, LJAD, UMR 7351, 06100 Nice, France
@article{CRMATH_2014__352_7-8_609_0,
     author = {Gilles Aubert and Audric Drogoul},
     title = {Topological gradient for fourth-order {PDE} and application to the detection of fine structures in {2D} images},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {609--613},
     publisher = {Elsevier},
     volume = {352},
     number = {7-8},
     year = {2014},
     doi = {10.1016/j.crma.2014.06.005},
     language = {en},
}
TY  - JOUR
AU  - Gilles Aubert
AU  - Audric Drogoul
TI  - Topological gradient for fourth-order PDE and application to the detection of fine structures in 2D images
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 609
EP  - 613
VL  - 352
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2014.06.005
LA  - en
ID  - CRMATH_2014__352_7-8_609_0
ER  - 
%0 Journal Article
%A Gilles Aubert
%A Audric Drogoul
%T Topological gradient for fourth-order PDE and application to the detection of fine structures in 2D images
%J Comptes Rendus. Mathématique
%D 2014
%P 609-613
%V 352
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2014.06.005
%G en
%F CRMATH_2014__352_7-8_609_0
Gilles Aubert; Audric Drogoul. Topological gradient for fourth-order PDE and application to the detection of fine structures in 2D images. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 609-613. doi : 10.1016/j.crma.2014.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.06.005/

[1] S. Amstutz; A.A. Novotny Topological asymptotic analysis of the Kirchhoff plate bending problem, ESAIM Control Optim. Calc. Var., Volume 17 (2011) no. 3, pp. 705-721

[2] S. Amstutz; I. Horchani; M. Masmoudi Crack detection by the topological gradient method, Control Cybern., Volume 34 (2005) no. 1, pp. 81-101

[3] D. Auroux; M. Masmoudi; L. Jaafar Belaid Image restoration and classification by topological asymptotic expansion (E. Taroco; E.A. de Souza Neto; A.A. Novotny, eds.), Variational Formulations in Mechanics: Theory and Applications, CIMNE, Barcelona, Spain, 2007, pp. 23-42

[4] S.C. Brenner; L.R. Scott The Mathematical Theory of Finite Element Methods, Springer-Verlag, 2002

[5] C. Cañero Morales; P. Radeva Vesselness enhancement diffusion, Pattern Recognit. Lett., Volume 24 (2003) no. 16, pp. 3141-3151

[6] A. Drogoul, G. Aubert, Topological gradient for fourth order PDE and application to the detection of fine structures in 2D images, Control Optim. Calc. Var., submitted for publication.

[7] L. Jaafar Belaid; M. Jaoua; M. Masmoudi; L. Siala Application of the topological gradient to image restoration and edge detection, Eng. Anal. Bound. Elem., Volume 32 (2008) no. 11, pp. 891-899

[8] W. Ming; J. Xu Nonconforming tetrahedral finite elements for fourth order elliptic equations, Math. Comput., Volume 76 (2007), pp. 1-18

[9] J. Sokolowski; A. Zochowski On the topological derivative in shape optimization, SIAM J. Control Optim., Volume 37 (1999) no. 4, pp. 1251-1272

[10] C. Steger An unbiased detector of curvilinear structures, IEEE Trans. Pattern Anal. Mach. Intell., Volume 20 (1998) no. 2, pp. 113-125

Cited by Sources:

Comments - Policy