Comptes Rendus
Partial differential equations
Bifurcation near the origin for the Robin problem with concave–convex nonlinearities
Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 627-632.

In this Note, we deal with the Robin parametric elliptic equation driven by a nonhomogeneous differential operator and with a reaction that exhibits competing terms (concave–convex nonlinearities). Without employing the Ambrosetti–Rabinowitz condition, we prove a bifurcation theorem for small positive values of the real parameter.

Dans cette Note, nous étudions le problème elliptique paramétrique de Robin pour un opérateur différentiel non homogène et avec une réaction qui présente des termes concurrents (du type concave–convexe). Sans utiliser la condition d'Ambrosetti–Rabinowitz, nous prouvons un théorème de bifurcation pour de petites valeurs positives du paramètre réel.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.05.007

Nikolaos S. Papageorgiou 1; Vicenţiu D. Rădulescu 2

1 National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece
2 Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
@article{CRMATH_2014__352_7-8_627_0,
     author = {Nikolaos S. Papageorgiou and Vicen\c{t}iu D. R\u{a}dulescu},
     title = {Bifurcation near the origin for the {Robin} problem with concave{\textendash}convex nonlinearities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {627--632},
     publisher = {Elsevier},
     volume = {352},
     number = {7-8},
     year = {2014},
     doi = {10.1016/j.crma.2014.05.007},
     language = {en},
}
TY  - JOUR
AU  - Nikolaos S. Papageorgiou
AU  - Vicenţiu D. Rădulescu
TI  - Bifurcation near the origin for the Robin problem with concave–convex nonlinearities
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 627
EP  - 632
VL  - 352
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2014.05.007
LA  - en
ID  - CRMATH_2014__352_7-8_627_0
ER  - 
%0 Journal Article
%A Nikolaos S. Papageorgiou
%A Vicenţiu D. Rădulescu
%T Bifurcation near the origin for the Robin problem with concave–convex nonlinearities
%J Comptes Rendus. Mathématique
%D 2014
%P 627-632
%V 352
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2014.05.007
%G en
%F CRMATH_2014__352_7-8_627_0
Nikolaos S. Papageorgiou; Vicenţiu D. Rădulescu. Bifurcation near the origin for the Robin problem with concave–convex nonlinearities. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 627-632. doi : 10.1016/j.crma.2014.05.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.05.007/

[1] A. Ambrosetti; P. Rabinowitz Dual variational methods in critical point theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349-381

[2] A. Ambrosetti; H. Brezis; G. Cerami Combined effects of concave–convex nonlinearities in some elliptic problems, J. Funct. Anal., Volume 122 (1994), pp. 519-543

[3] H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011

[4] P.G. Ciarlet Linear and Nonlinear Functional Analysis with Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA, 2013

[5] G. Lieberman The natural generalization of the conditions of Ladyzhenskaya and Uraltseva for elliptic equations, Commun. Partial Differ. Equ., Volume 16 (1991), pp. 311-361

[6] N.S. Papageorgiou, V.D. Rădulescu, Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities, submitted for publication.

[7] P. Pucci; J. Serrin The Maximum Principle, Birkhäuser, Basel, Switzerland, 2007

Cited by Sources:

Comments - Policy