In this Note, we deal with the Robin parametric elliptic equation driven by a nonhomogeneous differential operator and with a reaction that exhibits competing terms (concave–convex nonlinearities). Without employing the Ambrosetti–Rabinowitz condition, we prove a bifurcation theorem for small positive values of the real parameter.
Dans cette Note, nous étudions le problème elliptique paramétrique de Robin pour un opérateur différentiel non homogène et avec une réaction qui présente des termes concurrents (du type concave–convexe). Sans utiliser la condition d'Ambrosetti–Rabinowitz, nous prouvons un théorème de bifurcation pour de petites valeurs positives du paramètre réel.
Accepted:
Published online:
Nikolaos S. Papageorgiou 1; Vicenţiu D. Rădulescu 2
@article{CRMATH_2014__352_7-8_627_0, author = {Nikolaos S. Papageorgiou and Vicen\c{t}iu D. R\u{a}dulescu}, title = {Bifurcation near the origin for the {Robin} problem with concave{\textendash}convex nonlinearities}, journal = {Comptes Rendus. Math\'ematique}, pages = {627--632}, publisher = {Elsevier}, volume = {352}, number = {7-8}, year = {2014}, doi = {10.1016/j.crma.2014.05.007}, language = {en}, }
TY - JOUR AU - Nikolaos S. Papageorgiou AU - Vicenţiu D. Rădulescu TI - Bifurcation near the origin for the Robin problem with concave–convex nonlinearities JO - Comptes Rendus. Mathématique PY - 2014 SP - 627 EP - 632 VL - 352 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2014.05.007 LA - en ID - CRMATH_2014__352_7-8_627_0 ER -
%0 Journal Article %A Nikolaos S. Papageorgiou %A Vicenţiu D. Rădulescu %T Bifurcation near the origin for the Robin problem with concave–convex nonlinearities %J Comptes Rendus. Mathématique %D 2014 %P 627-632 %V 352 %N 7-8 %I Elsevier %R 10.1016/j.crma.2014.05.007 %G en %F CRMATH_2014__352_7-8_627_0
Nikolaos S. Papageorgiou; Vicenţiu D. Rădulescu. Bifurcation near the origin for the Robin problem with concave–convex nonlinearities. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 627-632. doi : 10.1016/j.crma.2014.05.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.05.007/
[1] Dual variational methods in critical point theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349-381
[2] Combined effects of concave–convex nonlinearities in some elliptic problems, J. Funct. Anal., Volume 122 (1994), pp. 519-543
[3] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011
[4] Linear and Nonlinear Functional Analysis with Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA, 2013
[5] The natural generalization of the conditions of Ladyzhenskaya and Uraltseva for elliptic equations, Commun. Partial Differ. Equ., Volume 16 (1991), pp. 311-361
[6] N.S. Papageorgiou, V.D. Rădulescu, Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities, submitted for publication.
[7] The Maximum Principle, Birkhäuser, Basel, Switzerland, 2007
Cited by Sources:
Comments - Policy