We establish a local non-existence result for the equation with Dirichlet boundary conditions on a smooth bounded domain and initial data in when the source term f is non-decreasing and for some exponent . This allows us to construct a locally Lipschitz f satisfying the Osgood condition , which ensures global existence for initial data in , such that for every q with there is a non-negative initial condition for which the corresponding semilinear problem has no local-in-time solution (‘immediate blow-up’).
Nous établissons un résultat de non-existence locale pour l'équation avec des conditions aux limites de Dirichlet sur un domaine borné lisse et des données initiales dans lorsque le terme de source f est non décroissant et pour un exposant . Ceci nous permet de construire un f localement Lipschitz qui satisfait la condition de Osgood , ce qui garantit l'existence globale pour des données initiales dans , de telle sorte que pour chaque q tel que il existe une condition initiale non négative pour laquelle le problème semi-linéaire correspondant n'admet pas de solution locale en temps ( « blow-up immédiat »).
Accepted:
Published online:
Robert Laister 1; James C. Robinson 2; Mikolaj Sierżęga 2
@article{CRMATH_2014__352_7-8_621_0, author = {Robert Laister and James C. Robinson and Mikolaj Sier\.z\k{e}ga}, title = {Non-existence of local solutions of semilinear heat equations of {Osgood} type in bounded domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {621--626}, publisher = {Elsevier}, volume = {352}, number = {7-8}, year = {2014}, doi = {10.1016/j.crma.2014.05.010}, language = {en}, }
TY - JOUR AU - Robert Laister AU - James C. Robinson AU - Mikolaj Sierżęga TI - Non-existence of local solutions of semilinear heat equations of Osgood type in bounded domains JO - Comptes Rendus. Mathématique PY - 2014 SP - 621 EP - 626 VL - 352 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2014.05.010 LA - en ID - CRMATH_2014__352_7-8_621_0 ER -
%0 Journal Article %A Robert Laister %A James C. Robinson %A Mikolaj Sierżęga %T Non-existence of local solutions of semilinear heat equations of Osgood type in bounded domains %J Comptes Rendus. Mathématique %D 2014 %P 621-626 %V 352 %N 7-8 %I Elsevier %R 10.1016/j.crma.2014.05.010 %G en %F CRMATH_2014__352_7-8_621_0
Robert Laister; James C. Robinson; Mikolaj Sierżęga. Non-existence of local solutions of semilinear heat equations of Osgood type in bounded domains. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 621-626. doi : 10.1016/j.crma.2014.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.05.010/
[1] Ill-posedness of the Navier–Stokes equations in a critical space in 3D, J. Funct. Anal., Volume 255 (2008), pp. 2233-2247
[2] No local solution for a nonlinear heat equation, Commun. Partial Differ. Equ., Volume 28 (2003), pp. 1807-1831
[3] Dirichlet boundary conditions can prevent blow-up reaction-diffusion equations and systems, Discrete Contin. Dyn. Syst., Volume 14 (2006), pp. 63-74
[4] Non-existence of local solutions for semilinear heat equations of Osgood type, J. Differ. Equ., Volume 255 (2013), pp. 3020-3028
[5] R. Laister, J.C. Robinson, M. Sierżęga, An elementary proof of a Gaussian lower bound on the Dirichlet heat kernel (2014), submitted for publication.
[6] R. Laister, J.C. Robinson, M. Sierzega, A. Vidal-López, A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces.
[7] Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Birkhäuser, Basel, 2007
[8] A note on well-posedness of semilinear reaction-diffusion problem with singular initial data, J. Math. Anal. Appl., Volume 385 (2012) no. 1, pp. 105-110
[9] Gaussian bounds for the Dirichlet heat kernel, J. Funct. Anal., Volume 88 (1990) no. 2, pp. 267-278
[10] Semilinear evolution equations in Banach spaces, J. Funct. Anal., Volume 32 (1979) no. 3, pp. 277-296
[11] Local existence and nonexistence for semilinear parabolic equations in , Indiana Univ. Math. J., Volume 29 (1980) no. 1, pp. 79-102
[12] -energy and blow-up for a semilinear heat equation, Proc. Symp. Pure Math., Volume 45 (1986), pp. 545-551
Cited by Sources:
Comments - Policy