Comptes Rendus
Partial differential equations
Non-existence of local solutions of semilinear heat equations of Osgood type in bounded domains
Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 621-626.

We establish a local non-existence result for the equation utΔu=f(u) with Dirichlet boundary conditions on a smooth bounded domain ΩRn and initial data in Lq(Ω) when the source term f is non-decreasing and limsupssγf(s)= for some exponent γ>q(1+2/n). This allows us to construct a locally Lipschitz f satisfying the Osgood condition 11/f(s)ds=, which ensures global existence for initial data in L(Ω), such that for every q with 1q< there is a non-negative initial condition u0Lq(Ω) for which the corresponding semilinear problem has no local-in-time solution (‘immediate blow-up’).

Nous établissons un résultat de non-existence locale pour l'équation utΔu=f(u) avec des conditions aux limites de Dirichlet sur un domaine borné lisse ΩRn et des données initiales dans Lq(Ω) lorsque le terme de source f est non décroissant et limsupssγf(s)= pour un exposant γ>q(1+2/n). Ceci nous permet de construire un f localement Lipschitz qui satisfait la condition de Osgood 11/f(s)ds=, ce qui garantit l'existence globale pour des données initiales dans L(Ω), de telle sorte que pour chaque q tel que 1q< il existe une condition initiale non négative u0Lq(Ω) pour laquelle le problème semi-linéaire correspondant n'admet pas de solution locale en temps ( « blow-up immédiat »).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.05.010

Robert Laister 1; James C. Robinson 2; Mikolaj Sierżęga 2

1 Department of Engineering Design and Mathematics, University of the West of England, Bristol BS16 1QY, UK
2 Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK
@article{CRMATH_2014__352_7-8_621_0,
     author = {Robert Laister and James C. Robinson and Mikolaj Sier\.z\k{e}ga},
     title = {Non-existence of local solutions of semilinear heat equations of {Osgood} type in bounded domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {621--626},
     publisher = {Elsevier},
     volume = {352},
     number = {7-8},
     year = {2014},
     doi = {10.1016/j.crma.2014.05.010},
     language = {en},
}
TY  - JOUR
AU  - Robert Laister
AU  - James C. Robinson
AU  - Mikolaj Sierżęga
TI  - Non-existence of local solutions of semilinear heat equations of Osgood type in bounded domains
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 621
EP  - 626
VL  - 352
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2014.05.010
LA  - en
ID  - CRMATH_2014__352_7-8_621_0
ER  - 
%0 Journal Article
%A Robert Laister
%A James C. Robinson
%A Mikolaj Sierżęga
%T Non-existence of local solutions of semilinear heat equations of Osgood type in bounded domains
%J Comptes Rendus. Mathématique
%D 2014
%P 621-626
%V 352
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2014.05.010
%G en
%F CRMATH_2014__352_7-8_621_0
Robert Laister; James C. Robinson; Mikolaj Sierżęga. Non-existence of local solutions of semilinear heat equations of Osgood type in bounded domains. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 621-626. doi : 10.1016/j.crma.2014.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.05.010/

[1] J. Bourgain; N. Pavlović Ill-posedness of the Navier–Stokes equations in a critical space in 3D, J. Funct. Anal., Volume 255 (2008), pp. 2233-2247

[2] C. Celik; Z. Zhou No local L1 solution for a nonlinear heat equation, Commun. Partial Differ. Equ., Volume 28 (2003), pp. 1807-1831

[3] M. Fila; H. Ninomiya; J.L. Vázquez Dirichlet boundary conditions can prevent blow-up reaction-diffusion equations and systems, Discrete Contin. Dyn. Syst., Volume 14 (2006), pp. 63-74

[4] R. Laister; J.C. Robinson; M. Sierżęga Non-existence of local solutions for semilinear heat equations of Osgood type, J. Differ. Equ., Volume 255 (2013), pp. 3020-3028

[5] R. Laister, J.C. Robinson, M. Sierżęga, An elementary proof of a Gaussian lower bound on the Dirichlet heat kernel (2014), submitted for publication.

[6] R. Laister, J.C. Robinson, M. Sierzega, A. Vidal-López, A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces.

[7] P. Quittner; P. Souplet Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Birkhäuser, Basel, 2007

[8] J.C. Robinson; M. Sierżęga A note on well-posedness of semilinear reaction-diffusion problem with singular initial data, J. Math. Anal. Appl., Volume 385 (2012) no. 1, pp. 105-110

[9] M. van den Berg Gaussian bounds for the Dirichlet heat kernel, J. Funct. Anal., Volume 88 (1990) no. 2, pp. 267-278

[10] F.B. Weissler Semilinear evolution equations in Banach spaces, J. Funct. Anal., Volume 32 (1979) no. 3, pp. 277-296

[11] F.B. Weissler Local existence and nonexistence for semilinear parabolic equations in Lp, Indiana Univ. Math. J., Volume 29 (1980) no. 1, pp. 79-102

[12] F.B. Weissler Lp-energy and blow-up for a semilinear heat equation, Proc. Symp. Pure Math., Volume 45 (1986), pp. 545-551

Cited by Sources:

Comments - Policy