Comptes Rendus
Partial differential equations
On the location of two blowup points on an annulus for the mean field equation
Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 615-619.

We consider the mean field equation on two-dimensional annular domains, and prove that if P1 and P2 are two blowup points of a blowing-up solution sequence of the equation, then we must have P1=P2.

Nous considérons l'équation de champ moyen sur les domaines annulaires à deux dimensions, et prouvons que, si P1 et P2 sont deux points d'explosion, alors nous devons avoir P1=P2.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.04.006

Massimo Grossi 1; Futoshi Takahashi 2

1 Dipartimento di Matematica, Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185 Roma, Italy
2 Department of Mathematics, Osaka City University & OCAMI, Sumiyoshi-ku, Osaka 558-8585, Japan
@article{CRMATH_2014__352_7-8_615_0,
     author = {Massimo Grossi and Futoshi Takahashi},
     title = {On the location of two blowup points on an annulus for the mean field equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {615--619},
     publisher = {Elsevier},
     volume = {352},
     number = {7-8},
     year = {2014},
     doi = {10.1016/j.crma.2014.04.006},
     language = {en},
}
TY  - JOUR
AU  - Massimo Grossi
AU  - Futoshi Takahashi
TI  - On the location of two blowup points on an annulus for the mean field equation
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 615
EP  - 619
VL  - 352
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2014.04.006
LA  - en
ID  - CRMATH_2014__352_7-8_615_0
ER  - 
%0 Journal Article
%A Massimo Grossi
%A Futoshi Takahashi
%T On the location of two blowup points on an annulus for the mean field equation
%J Comptes Rendus. Mathématique
%D 2014
%P 615-619
%V 352
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2014.04.006
%G en
%F CRMATH_2014__352_7-8_615_0
Massimo Grossi; Futoshi Takahashi. On the location of two blowup points on an annulus for the mean field equation. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 615-619. doi : 10.1016/j.crma.2014.04.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.04.006/

[1] N.I. Akhiezer Elements of the Theory of Elliptic Equations, Transl. Math. Monogr., vol. 79, American Mathematical Society, Providence, RI, 1990 MR1054205 (91k:33016)

[2] Ü. Aksoy; A.O. Celebi Dirichlet problem for a generalized inhomogeneous polyharmonic equation in an annular domain, Complex Var. Elliptic Equ., Volume 57 (2012), pp. 229-241 (MR2886739)

[3] H. Brezis; F. Merle Uniform estimates and blow-up behavior for solutions of Δu=V(x)eu in two dimensions, Commun. Partial Differ. Equ., Volume 16 (1991), pp. 1223-1253 MR1132783 (92m:35084)

[4] D. Castorina; F. Pacella Symmetry of positive solutions of an almost-critical problem in an annulus, Calc. Var. Partial Differ. Equ., Volume 23 (2005), pp. 125-138 MR2138079 (2006a:35109)

[5] C.C. Chen; C.S. Lin On the symmetry of blowup solutions to a mean field equation, Ann. Inst. Henri Poincaré, Volume 18 (2001), pp. 271-296 MR1831657 (2002d:35064)

[6] R. Courant; D. Hilbert Methods of Mathematical Physics, vol. I, Interscience Publishers, Inc., New York, NY, 1953 MR0065391 (16,426a)

[7] M. Del Pino; M. Kowalczyk; M. Musso Singular limits in Liouville-type equations, Calc. Var. Partial Differ. Equ., Volume 24 (2005), pp. 47-81 MR2157850 (2006h:35089)

[8] P. Esposito; M. Grossi; A. Pistoia On the existence of blowing-up solutions for a mean field equation, Ann. Inst. Henri Poincaré, Volume 22 (2005), pp. 227-257 MR2124164 (2005k:35112)

[9] M. Grossi; F. Takahashi Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, J. Funct. Anal., Volume 259 (2010), pp. 904-917 MR2652176 (2011e:35100)

[10] D.M. Hickey The equilibrium point of Green's function for an annular region, Ann. Math. (2), Volume 30 (1928/1929) no. 1–4, pp. 373-383 (MR1502889)

[11] D.M. Hickey A note on the equilibrium point of the Green's function for an annulus, Bull. Amer. Math. Soc., Volume 41 (1935) no. 6, pp. 389-393 (MR1563100)

[12] C.S. Lin; I. Takagi Methods of rotating planes applied to a singularly perturbed Neumann problem, Calc. Var. Partial Differ. Equ., Volume 13 (2001), pp. 519-536 MR1867940 (2002k:35116)

[13] L. Ma; J. Wei Convergence for a Liouville equation, Comment. Math. Helv., Volume 76 (2001), pp. 506-514 MR1854696 (2002h:35097)

[14] K. Nagasaki; T. Suzuki Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptot. Anal., Volume 3 (1990), pp. 173-188 MR1061665 (91f:35053)

[15] G. Tarantello Selfdual Gauge Field Vortices: An Analytical Approach, Prog. Nonlinear Differ. Equ. Appl., vol. 72, Birkhäuser, Boston, 2008 MR2403845 (2009k:58028)

[16] Y. Yang Solitons in Field Theory and Nonlinear Analysis, Springer Monogr. Math., Springer-Verlag, New York, 2001 MR1838682 (2002m:58001)

Cited by Sources:

Comments - Policy