We consider the mean field equation on two-dimensional annular domains, and prove that if and are two blowup points of a blowing-up solution sequence of the equation, then we must have .
Nous considérons l'équation de champ moyen sur les domaines annulaires à deux dimensions, et prouvons que, si et sont deux points d'explosion, alors nous devons avoir .
Accepted:
Published online:
Massimo Grossi 1; Futoshi Takahashi 2
@article{CRMATH_2014__352_7-8_615_0, author = {Massimo Grossi and Futoshi Takahashi}, title = {On the location of two blowup points on an annulus for the mean field equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {615--619}, publisher = {Elsevier}, volume = {352}, number = {7-8}, year = {2014}, doi = {10.1016/j.crma.2014.04.006}, language = {en}, }
TY - JOUR AU - Massimo Grossi AU - Futoshi Takahashi TI - On the location of two blowup points on an annulus for the mean field equation JO - Comptes Rendus. Mathématique PY - 2014 SP - 615 EP - 619 VL - 352 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2014.04.006 LA - en ID - CRMATH_2014__352_7-8_615_0 ER -
Massimo Grossi; Futoshi Takahashi. On the location of two blowup points on an annulus for the mean field equation. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 615-619. doi : 10.1016/j.crma.2014.04.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.04.006/
[1] Elements of the Theory of Elliptic Equations, Transl. Math. Monogr., vol. 79, American Mathematical Society, Providence, RI, 1990 MR1054205 (91k:33016)
[2] Dirichlet problem for a generalized inhomogeneous polyharmonic equation in an annular domain, Complex Var. Elliptic Equ., Volume 57 (2012), pp. 229-241 (MR2886739)
[3] Uniform estimates and blow-up behavior for solutions of in two dimensions, Commun. Partial Differ. Equ., Volume 16 (1991), pp. 1223-1253 MR1132783 (92m:35084)
[4] Symmetry of positive solutions of an almost-critical problem in an annulus, Calc. Var. Partial Differ. Equ., Volume 23 (2005), pp. 125-138 MR2138079 (2006a:35109)
[5] On the symmetry of blowup solutions to a mean field equation, Ann. Inst. Henri Poincaré, Volume 18 (2001), pp. 271-296 MR1831657 (2002d:35064)
[6] Methods of Mathematical Physics, vol. I, Interscience Publishers, Inc., New York, NY, 1953 MR0065391 (16,426a)
[7] Singular limits in Liouville-type equations, Calc. Var. Partial Differ. Equ., Volume 24 (2005), pp. 47-81 MR2157850 (2006h:35089)
[8] On the existence of blowing-up solutions for a mean field equation, Ann. Inst. Henri Poincaré, Volume 22 (2005), pp. 227-257 MR2124164 (2005k:35112)
[9] Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, J. Funct. Anal., Volume 259 (2010), pp. 904-917 MR2652176 (2011e:35100)
[10] The equilibrium point of Green's function for an annular region, Ann. Math. (2), Volume 30 (1928/1929) no. 1–4, pp. 373-383 (MR1502889)
[11] A note on the equilibrium point of the Green's function for an annulus, Bull. Amer. Math. Soc., Volume 41 (1935) no. 6, pp. 389-393 (MR1563100)
[12] Methods of rotating planes applied to a singularly perturbed Neumann problem, Calc. Var. Partial Differ. Equ., Volume 13 (2001), pp. 519-536 MR1867940 (2002k:35116)
[13] Convergence for a Liouville equation, Comment. Math. Helv., Volume 76 (2001), pp. 506-514 MR1854696 (2002h:35097)
[14] Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptot. Anal., Volume 3 (1990), pp. 173-188 MR1061665 (91f:35053)
[15] Selfdual Gauge Field Vortices: An Analytical Approach, Prog. Nonlinear Differ. Equ. Appl., vol. 72, Birkhäuser, Boston, 2008 MR2403845 (2009k:58028)
[16] Solitons in Field Theory and Nonlinear Analysis, Springer Monogr. Math., Springer-Verlag, New York, 2001 MR1838682 (2002m:58001)
Cited by Sources:
Comments - Policy