Comptes Rendus
Numerical analysis
Parametric analytical preconditioning and its applications to the reduced collocation methods
[Préconditionnements analytiques en paramètres et applications aux méthodes de collocation réduites]
Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 661-666.

In this paper, we extend the recently developed reduced collocation method [3] to the nonlinear case, and propose two analytical preconditioning strategies. One is parameter independent and easy to implement, the other one has the traditional affinity with respect to the parameters, which allows an efficient implementation through an offline–online decomposition. Overall, preconditioning improves the quality of the error estimation uniformly on the parameter domain, and speeds up the convergence of the reduced solution to the truth approximation.

On étend dans cette note la méthode de collocation réduite récemment introduite dans [3] au cas non linéaire et on propose deux stratégies de préconditionnement dont une est indépendante des paramètres et facile a mettre en oeuvre et l'autre possède la propriété classique de décomposition affine en les paramètres qui permet une mise en oeuvre rapide en ligne/hors ligne. Ces stratégies améliorent la qualité de l'approximation et la vitesse de convergence.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.06.001

Yanlai Chen 1 ; Sigal Gottlieb 1 ; Yvon Maday 2, 3

1 Department of Mathematics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
2 Sorbonne Universités, Université Paris-6 (UPMC), UMR 7598, Laboratoire Jacques-Louis-Lions & Institut universitaire de France, 75005 Paris, France
3 Division of Applied Mathematics, Brown University, 182 George St., Providence, RI 02912, USA
@article{CRMATH_2014__352_7-8_661_0,
     author = {Yanlai Chen and Sigal Gottlieb and Yvon Maday},
     title = {Parametric analytical preconditioning and its applications to the reduced collocation methods},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {661--666},
     publisher = {Elsevier},
     volume = {352},
     number = {7-8},
     year = {2014},
     doi = {10.1016/j.crma.2014.06.001},
     language = {en},
}
TY  - JOUR
AU  - Yanlai Chen
AU  - Sigal Gottlieb
AU  - Yvon Maday
TI  - Parametric analytical preconditioning and its applications to the reduced collocation methods
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 661
EP  - 666
VL  - 352
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2014.06.001
LA  - en
ID  - CRMATH_2014__352_7-8_661_0
ER  - 
%0 Journal Article
%A Yanlai Chen
%A Sigal Gottlieb
%A Yvon Maday
%T Parametric analytical preconditioning and its applications to the reduced collocation methods
%J Comptes Rendus. Mathématique
%D 2014
%P 661-666
%V 352
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2014.06.001
%G en
%F CRMATH_2014__352_7-8_661_0
Yanlai Chen; Sigal Gottlieb; Yvon Maday. Parametric analytical preconditioning and its applications to the reduced collocation methods. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 661-666. doi : 10.1016/j.crma.2014.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.06.001/

[1] M. Barrault; N.C. Nguyen; Y. Maday; A.T. Patera An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 667-672

[2] A. Barrett; G. Reddien On the reduced basis method, Z. Angew. Math. Mech., Volume 75 (1995) no. 7, pp. 543-549

[3] Y. Chen; S. Gottlieb Reduced collocation methods: reduced basis methods in the collocation framework, J. Sci. Comput., Volume 55 (2013) no. 3, pp. 718-737

[4] J.S. Hesthaven; S. Gottlieb; D. Gottlieb Spectral Methods for Time-Dependent Problems, Cambridge Monographs on Applied and Computational Mathematics, vol. 21, Cambridge University Press, Cambridge, UK, 2007

[5] A.E. Løvgren; Y. Maday; E.M. Rønquist The reduced basis element method: offline–online decomposition in the nonconforming, nonaffine case, Spectral and High Order Methods for Partial Differential Equations, 2011, pp. 247-254

[6] A.K. Noor; J.M. Peters Reduced basis technique for nonlinear analysis of structures, AIAA J., Volume 18 (1980) no. 4, pp. 455-462

[7] J.S. Peterson The reduced basis method for incompressible viscous flow calculations, SIAM J. Sci. Stat. Comput., Volume 10 (1989) no. 4, pp. 777-786

[8] C. Prud'homme; D. Rovas; K. Veroy; Y. Maday; A.T. Patera; G. Turinici Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods, J. Fluids Eng., Volume 124 (2002) no. 1, pp. 70-80

[9] L.N. Trefethen Spectral Methods in MATLAB, Software, Environments, and Tools, vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA, 2000

  • P. Edel; Y. Maday Dual natural-norm a posteriori error estimators for reduced basis approximations to parametrized linear equations, M3AS. Mathematical Models Methods in Applied Sciences, Volume 33 (2023) no. 6, pp. 1215-1244 | DOI:10.1142/s0218202523500288 | Zbl:7716181
  • Zhichao Peng; Yanlai Chen; Yingda Cheng; Fengyan Li A reduced basis method for radiative transfer equation, Journal of Scientific Computing, Volume 91 (2022) no. 1, p. 27 (Id/No 5) | DOI:10.1007/s10915-022-01782-2 | Zbl:1493.65162
  • Shijin Hou; Yanlai Chen; Yinhua Xia Fast L2 optimal mass transport via reduced basis methods for the Monge-Ampère equation, SIAM Journal on Scientific Computing, Volume 44 (2022) no. 6, p. a3536-a3559 | DOI:10.1137/21m1463720 | Zbl:1509.65109
  • Yanlai Chen; Sigal Gottlieb; Lijie Ji; Yvon Maday An EIM-degradation free reduced basis method via over collocation and residual hyper reduction-based error estimation, Journal of Computational Physics, Volume 444 (2021), p. 18 (Id/No 110545) | DOI:10.1016/j.jcp.2021.110545 | Zbl:7515446
  • Yanlai Chen; Lijie Ji; Akil Narayan; Zhenli Xu L1-Based Reduced Over Collocation and Hyper Reduction for Steady State and Time-Dependent Nonlinear Equations, Journal of Scientific Computing, Volume 87 (2021) no. 1 | DOI:10.1007/s10915-021-01416-z
  • Rezvan Ghaffari; Farideh Ghoreishi Reduced collocation method for time-dependent parametrized partial differential equations, Bulletin of the Iranian Mathematical Society, Volume 45 (2019) no. 5, pp. 1487-1504 | DOI:10.1007/s41980-019-00210-w | Zbl:1442.65291
  • Niccolò Dal Santo; Simone Deparis; Andrea Manzoni; Alfio Quarteroni Multi space reduced basis preconditioners for large-scale parametrized PDEs, SIAM Journal on Scientific Computing, Volume 40 (2018) no. 2, p. a954-a983 | DOI:10.1137/16m1089149 | Zbl:1453.65416
  • Anthony Nouy Low-Rank Tensor Methods for Model Order Reduction, Handbook of Uncertainty Quantification (2017), p. 857 | DOI:10.1007/978-3-319-12385-1_21
  • Yanlai Chen; Sigal Gottlieb; Alfa Heryudono; Akil Narayan A reduced radial basis function method for partial differential equations on irregular domains, Journal of Scientific Computing, Volume 66 (2016) no. 1, pp. 67-90 | DOI:10.1007/s10915-015-0013-8 | Zbl:1338.65252
  • Olivier Zahm; Anthony Nouy Interpolation of inverse operators for preconditioning parameter-dependent equations, SIAM Journal on Scientific Computing, Volume 38 (2016) no. 2, p. a1044-a1074 | DOI:10.1137/15m1019210 | Zbl:1382.65035
  • Jiahua Jiang; Yanlai Chen; Akil Narayan A goal-oriented reduced basis methods-accelerated generalized polynomial chaos algorithm, SIAM/ASA Journal on Uncertainty Quantification, Volume 4 (2016), pp. 1398-1420 | DOI:10.1137/16m1055736 | Zbl:1352.65012
  • Anthony Nouy Low-Rank Tensor Methods for Model Order Reduction, Handbook of Uncertainty Quantification (2015), p. 1 | DOI:10.1007/978-3-319-11259-6_21-1

Cité par 12 documents. Sources : Crossref, zbMATH

Commentaires - Politique