[Préconditionnements analytiques en paramètres et applications aux méthodes de collocation réduites]
In this paper, we extend the recently developed reduced collocation method [3] to the nonlinear case, and propose two analytical preconditioning strategies. One is parameter independent and easy to implement, the other one has the traditional affinity with respect to the parameters, which allows an efficient implementation through an offline–online decomposition. Overall, preconditioning improves the quality of the error estimation uniformly on the parameter domain, and speeds up the convergence of the reduced solution to the truth approximation.
On étend dans cette note la méthode de collocation réduite récemment introduite dans [3] au cas non linéaire et on propose deux stratégies de préconditionnement dont une est indépendante des paramètres et facile a mettre en oeuvre et l'autre possède la propriété classique de décomposition affine en les paramètres qui permet une mise en oeuvre rapide en ligne/hors ligne. Ces stratégies améliorent la qualité de l'approximation et la vitesse de convergence.
Accepté le :
Publié le :
Yanlai Chen 1 ; Sigal Gottlieb 1 ; Yvon Maday 2, 3
@article{CRMATH_2014__352_7-8_661_0, author = {Yanlai Chen and Sigal Gottlieb and Yvon Maday}, title = {Parametric analytical preconditioning and its applications to the reduced collocation methods}, journal = {Comptes Rendus. Math\'ematique}, pages = {661--666}, publisher = {Elsevier}, volume = {352}, number = {7-8}, year = {2014}, doi = {10.1016/j.crma.2014.06.001}, language = {en}, }
TY - JOUR AU - Yanlai Chen AU - Sigal Gottlieb AU - Yvon Maday TI - Parametric analytical preconditioning and its applications to the reduced collocation methods JO - Comptes Rendus. Mathématique PY - 2014 SP - 661 EP - 666 VL - 352 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2014.06.001 LA - en ID - CRMATH_2014__352_7-8_661_0 ER -
%0 Journal Article %A Yanlai Chen %A Sigal Gottlieb %A Yvon Maday %T Parametric analytical preconditioning and its applications to the reduced collocation methods %J Comptes Rendus. Mathématique %D 2014 %P 661-666 %V 352 %N 7-8 %I Elsevier %R 10.1016/j.crma.2014.06.001 %G en %F CRMATH_2014__352_7-8_661_0
Yanlai Chen; Sigal Gottlieb; Yvon Maday. Parametric analytical preconditioning and its applications to the reduced collocation methods. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 661-666. doi : 10.1016/j.crma.2014.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.06.001/
[1] An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 667-672
[2] On the reduced basis method, Z. Angew. Math. Mech., Volume 75 (1995) no. 7, pp. 543-549
[3] Reduced collocation methods: reduced basis methods in the collocation framework, J. Sci. Comput., Volume 55 (2013) no. 3, pp. 718-737
[4] Spectral Methods for Time-Dependent Problems, Cambridge Monographs on Applied and Computational Mathematics, vol. 21, Cambridge University Press, Cambridge, UK, 2007
[5] The reduced basis element method: offline–online decomposition in the nonconforming, nonaffine case, Spectral and High Order Methods for Partial Differential Equations, 2011, pp. 247-254
[6] Reduced basis technique for nonlinear analysis of structures, AIAA J., Volume 18 (1980) no. 4, pp. 455-462
[7] The reduced basis method for incompressible viscous flow calculations, SIAM J. Sci. Stat. Comput., Volume 10 (1989) no. 4, pp. 777-786
[8] Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods, J. Fluids Eng., Volume 124 (2002) no. 1, pp. 70-80
[9] Spectral Methods in MATLAB, Software, Environments, and Tools, vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA, 2000
- Dual natural-norm a posteriori error estimators for reduced basis approximations to parametrized linear equations, M
AS. Mathematical Models Methods in Applied Sciences, Volume 33 (2023) no. 6, pp. 1215-1244 | DOI:10.1142/s0218202523500288 | Zbl:7716181 - A reduced basis method for radiative transfer equation, Journal of Scientific Computing, Volume 91 (2022) no. 1, p. 27 (Id/No 5) | DOI:10.1007/s10915-022-01782-2 | Zbl:1493.65162
- Fast
optimal mass transport via reduced basis methods for the Monge-Ampère equation, SIAM Journal on Scientific Computing, Volume 44 (2022) no. 6, p. a3536-a3559 | DOI:10.1137/21m1463720 | Zbl:1509.65109 - An EIM-degradation free reduced basis method via over collocation and residual hyper reduction-based error estimation, Journal of Computational Physics, Volume 444 (2021), p. 18 (Id/No 110545) | DOI:10.1016/j.jcp.2021.110545 | Zbl:7515446
- L1-Based Reduced Over Collocation and Hyper Reduction for Steady State and Time-Dependent Nonlinear Equations, Journal of Scientific Computing, Volume 87 (2021) no. 1 | DOI:10.1007/s10915-021-01416-z
- Reduced collocation method for time-dependent parametrized partial differential equations, Bulletin of the Iranian Mathematical Society, Volume 45 (2019) no. 5, pp. 1487-1504 | DOI:10.1007/s41980-019-00210-w | Zbl:1442.65291
- Multi space reduced basis preconditioners for large-scale parametrized PDEs, SIAM Journal on Scientific Computing, Volume 40 (2018) no. 2, p. a954-a983 | DOI:10.1137/16m1089149 | Zbl:1453.65416
- Low-Rank Tensor Methods for Model Order Reduction, Handbook of Uncertainty Quantification (2017), p. 857 | DOI:10.1007/978-3-319-12385-1_21
- A reduced radial basis function method for partial differential equations on irregular domains, Journal of Scientific Computing, Volume 66 (2016) no. 1, pp. 67-90 | DOI:10.1007/s10915-015-0013-8 | Zbl:1338.65252
- Interpolation of inverse operators for preconditioning parameter-dependent equations, SIAM Journal on Scientific Computing, Volume 38 (2016) no. 2, p. a1044-a1074 | DOI:10.1137/15m1019210 | Zbl:1382.65035
- A goal-oriented reduced basis methods-accelerated generalized polynomial chaos algorithm, SIAM/ASA Journal on Uncertainty Quantification, Volume 4 (2016), pp. 1398-1420 | DOI:10.1137/16m1055736 | Zbl:1352.65012
- Low-Rank Tensor Methods for Model Order Reduction, Handbook of Uncertainty Quantification (2015), p. 1 | DOI:10.1007/978-3-319-11259-6_21-1
Cité par 12 documents. Sources : Crossref, zbMATH
Commentaires - Politique