Comptes Rendus
Numerical analysis
Error estimates for stabilized finite element methods applied to ill-posed problems
Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 655-659.

We propose an analysis for the stabilized finite element methods proposed in Burman (2013) [2] valid in the case of ill-posed problems for which only weak continuous dependence can be assumed. A priori and a posteriori error estimates are obtained without assuming coercivity or inf–sup stability of the continuous problem.

Dans cette note, nous proposons une nouvelle analyse pour les méthodes d'éléments finis stabilisées introduites dans Burman (2013) [2], appliquées a des problèmes mal posés avec des propriétés de dépendance continue faibles. Nous obtenons des estimations a priori et a posteriori sans supposer ni coercitivité ni stabilité inf–sup de la forme bilinéaire du problème continu.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.06.008

Erik Burman 1

1 Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom
@article{CRMATH_2014__352_7-8_655_0,
     author = {Erik Burman},
     title = {Error estimates for stabilized finite element methods applied to ill-posed problems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {655--659},
     publisher = {Elsevier},
     volume = {352},
     number = {7-8},
     year = {2014},
     doi = {10.1016/j.crma.2014.06.008},
     language = {en},
}
TY  - JOUR
AU  - Erik Burman
TI  - Error estimates for stabilized finite element methods applied to ill-posed problems
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 655
EP  - 659
VL  - 352
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2014.06.008
LA  - en
ID  - CRMATH_2014__352_7-8_655_0
ER  - 
%0 Journal Article
%A Erik Burman
%T Error estimates for stabilized finite element methods applied to ill-posed problems
%J Comptes Rendus. Mathématique
%D 2014
%P 655-659
%V 352
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2014.06.008
%G en
%F CRMATH_2014__352_7-8_655_0
Erik Burman. Error estimates for stabilized finite element methods applied to ill-posed problems. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 655-659. doi : 10.1016/j.crma.2014.06.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.06.008/

[1] G. Alessandrini; L. Rondi; E. Rosset; S. Vessella The stability for the Cauchy problem for elliptic equations, Inverse Probl., Volume 25 (2009) no. 12, p. 123004 (47 p)

[2] E. Burman Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: Elliptic equations, SIAM J. Sci. Comput., Volume 35 (2013) no. 6, p. A2752-A2780

Cited by Sources:

Comments - Policy