Comptes Rendus
Complex analysis
Weak solutions to complex Monge–Ampère equations on compact Kähler manifolds
Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 589-592.

We show a general existence theorem of solutions to the complex Monge–Ampère type equation on compact Kähler manifolds.

Nous montrons un théorème général d'existence et d'unicité de solution d'une équation de type Monge–Ampère complexe sur des variétés de Kähler compactes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.06.003

Slimane Benelkourchi 1

1 Université de Montréal, Pavillon 3744, rue Jean-Brillant, Montréal QC H3C 3J7, Canada
@article{CRMATH_2014__352_7-8_589_0,
     author = {Slimane Benelkourchi},
     title = {Weak solutions to complex {Monge{\textendash}Amp\`ere} equations on compact {K\"ahler} manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {589--592},
     publisher = {Elsevier},
     volume = {352},
     number = {7-8},
     year = {2014},
     doi = {10.1016/j.crma.2014.06.003},
     language = {en},
}
TY  - JOUR
AU  - Slimane Benelkourchi
TI  - Weak solutions to complex Monge–Ampère equations on compact Kähler manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 589
EP  - 592
VL  - 352
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2014.06.003
LA  - en
ID  - CRMATH_2014__352_7-8_589_0
ER  - 
%0 Journal Article
%A Slimane Benelkourchi
%T Weak solutions to complex Monge–Ampère equations on compact Kähler manifolds
%J Comptes Rendus. Mathématique
%D 2014
%P 589-592
%V 352
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2014.06.003
%G en
%F CRMATH_2014__352_7-8_589_0
Slimane Benelkourchi. Weak solutions to complex Monge–Ampère equations on compact Kähler manifolds. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 589-592. doi : 10.1016/j.crma.2014.06.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.06.003/

[1] T. Aubin Équations du type Monge–Ampère sur les variétés kählériennes compactes, C. R. Acad. Sci. Paris, Volume 283 (1976), pp. 119-121

[2] T. Aubin Équations du type Monge–Ampère sur les variétës kählériennes compactes, Bull. Sci. Math., Volume 102 (1978), pp. 63-95

[3] E. Bedford; B.A. Taylor A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982) no. 1–2, pp. 1-40

[4] E. Bedford; B.A. Taylor Fine topology, Šilov boundary, and (ddc)n, J. Funct. Anal., Volume 72 (1987) no. 2, pp. 225-251

[5] S. Benelkourchi; V. Guedj; A. Zeriahi A priori estimates for weak solutions of complex Monge–Ampère equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume VII (2008), pp. 1-16

[6] R.J. Berman; S. Boucksom; V. Guedj; A. Zeriahi A variational approach to complex Monge–Ampère equations, Publ. Math. Inst. Hautes Études Sci., Volume 117 (2013), pp. 179-245

[7] S. Boucksom; P. Eyssidieux; V. Guedj; A. Zeriahi Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262

[8] U. Cegrell; S. Kołodziej The equation of complex Monge–Ampère type and stability of solutions, Math. Ann., Volume 334 (2006) no. 4, pp. 713-729

[9] S. Dinew Uniqueness in E(X,ω), J. Funct. Anal., Volume 256 (2009) no. 7, pp. 2113-2122

[10] R.E. Edwards Functional Analysis: Theory and Applications, Holt-Rinehart and Winston, 1965

[11] V. Guedj; A. Zeriahi Intrinsic capacities on compact Kahler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639

[12] V. Guedj; A. Zeriahi The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482

[13] Slawomir Kołodziej Weak solutions of equations of complex Monge–Ampère type, Ann. Pol. Math., Volume 73 (2000) no. 1, pp. 59-67

[14] Hoang Chinh Lu Solutions to degenerate complex Hessian equations, J. Math. Pures Appl., Volume 100 (2013), pp. 785-805

[15] S. Kołodziej The complex Monge–Ampère equation and pluripotential theory, Mem. Amer. Math. Soc., Volume 178 (2005) no. 840 (x+64 pp.)

[16] S.T. Yau On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I, Commun. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411

Cited by Sources:

Comments - Policy