We prove that the derivative of an inner function θ is outer if and only if θ is a Möbius transformation. An alternative characterization involving a reverse Schwarz–Pick type estimate is also given.
Étant donnée une fonction intérieure θ, on démontre que sa dérivée est extérieure si et seulement si θ est une transformation de Möbius.
Accepted:
Published online:
Konstantin M. Dyakonov 1
@article{CRMATH_2014__352_7-8_593_0, author = {Konstantin M. Dyakonov}, title = {A characterization of {M\"obius} transformations}, journal = {Comptes Rendus. Math\'ematique}, pages = {593--595}, publisher = {Elsevier}, volume = {352}, number = {7-8}, year = {2014}, doi = {10.1016/j.crma.2014.05.009}, language = {en}, }
Konstantin M. Dyakonov. A characterization of Möbius transformations. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 593-595. doi : 10.1016/j.crma.2014.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.05.009/
[1] On inner functions with -derivative, Mich. Math. J., Volume 21 (1974), pp. 115-127
[2] Theory of Functions of a Complex Variable, Vol. II, Chelsea Publ. Co., New York, 1954
[3] Smooth functions and coinvariant subspaces of the shift operator, Algebra Anal., Volume 4 (1992) no. 5, pp. 117-147 (English transl. in St. Petersburg Math. J., 4, 1993, pp. 933-959)
[4] A reverse Schwarz–Pick inequality, Comput. Methods Funct. Theory, Volume 13 (2013), pp. 449-457
[5] Bounded Analytic Functions, Springer, New York, 2007
[6] Note on the location of zeros of the derivative of a rational function whose zeros and poles are symmetric in a circle, Bull. Amer. Math. Soc., Volume 45 (1939), pp. 462-470
Cited by Sources:
Comments - Policy