Comptes Rendus
Complex analysis/Harmonic analysis
A characterization of Möbius transformations
Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 593-595.

We prove that the derivative θ of an inner function θ is outer if and only if θ is a Möbius transformation. An alternative characterization involving a reverse Schwarz–Pick type estimate is also given.

Étant donnée une fonction intérieure θ, on démontre que sa dérivée θ est extérieure si et seulement si θ est une transformation de Möbius.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.05.009

Konstantin M. Dyakonov 1

1 ICREA and Universitat de Barcelona, Departament de Matemàtica Aplicada i Anàlisi, Gran Via 585, E-08007 Barcelona, Spain
@article{CRMATH_2014__352_7-8_593_0,
     author = {Konstantin M. Dyakonov},
     title = {A characterization of {M\"obius} transformations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {593--595},
     publisher = {Elsevier},
     volume = {352},
     number = {7-8},
     year = {2014},
     doi = {10.1016/j.crma.2014.05.009},
     language = {en},
}
TY  - JOUR
AU  - Konstantin M. Dyakonov
TI  - A characterization of Möbius transformations
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 593
EP  - 595
VL  - 352
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2014.05.009
LA  - en
ID  - CRMATH_2014__352_7-8_593_0
ER  - 
%0 Journal Article
%A Konstantin M. Dyakonov
%T A characterization of Möbius transformations
%J Comptes Rendus. Mathématique
%D 2014
%P 593-595
%V 352
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2014.05.009
%G en
%F CRMATH_2014__352_7-8_593_0
Konstantin M. Dyakonov. A characterization of Möbius transformations. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 593-595. doi : 10.1016/j.crma.2014.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.05.009/

[1] P.R. Ahern; D.N. Clark On inner functions with Hp-derivative, Mich. Math. J., Volume 21 (1974), pp. 115-127

[2] C. Carathéodory Theory of Functions of a Complex Variable, Vol. II, Chelsea Publ. Co., New York, 1954

[3] K.M. Dyakonov Smooth functions and coinvariant subspaces of the shift operator, Algebra Anal., Volume 4 (1992) no. 5, pp. 117-147 (English transl. in St. Petersburg Math. J., 4, 1993, pp. 933-959)

[4] K.M. Dyakonov A reverse Schwarz–Pick inequality, Comput. Methods Funct. Theory, Volume 13 (2013), pp. 449-457

[5] J.B. Garnett Bounded Analytic Functions, Springer, New York, 2007

[6] J.L. Walsh Note on the location of zeros of the derivative of a rational function whose zeros and poles are symmetric in a circle, Bull. Amer. Math. Soc., Volume 45 (1939), pp. 462-470

Cited by Sources:

Comments - Policy