[Une caractérisation des transformations de Möbius]
Étant donnée une fonction intérieure θ, on démontre que sa dérivée
We prove that the derivative
Accepté le :
Publié le :
Konstantin M. Dyakonov 1
@article{CRMATH_2014__352_7-8_593_0, author = {Konstantin M. Dyakonov}, title = {A characterization of {M\"obius} transformations}, journal = {Comptes Rendus. Math\'ematique}, pages = {593--595}, publisher = {Elsevier}, volume = {352}, number = {7-8}, year = {2014}, doi = {10.1016/j.crma.2014.05.009}, language = {en}, }
Konstantin M. Dyakonov. A characterization of Möbius transformations. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 593-595. doi : 10.1016/j.crma.2014.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.05.009/
[1] On inner functions with
[2] Theory of Functions of a Complex Variable, Vol. II, Chelsea Publ. Co., New York, 1954
[3] Smooth functions and coinvariant subspaces of the shift operator, Algebra Anal., Volume 4 (1992) no. 5, pp. 117-147 (English transl. in St. Petersburg Math. J., 4, 1993, pp. 933-959)
[4] A reverse Schwarz–Pick inequality, Comput. Methods Funct. Theory, Volume 13 (2013), pp. 449-457
[5] Bounded Analytic Functions, Springer, New York, 2007
[6] Note on the location of zeros of the derivative of a rational function whose zeros and poles are symmetric in a circle, Bull. Amer. Math. Soc., Volume 45 (1939), pp. 462-470
- Critical values of inner functions, Advances in Mathematics, Volume 452 (2024), p. 109815 | DOI:10.1016/j.aim.2024.109815
- The Nehari-Schwarz lemma and infinitesimal boundary rigidity of bounded holomorphic functions, Studia Universitatis Babes-Bolyai Matematica, Volume 67 (2022) no. 2, p. 285 | DOI:10.24193/subbmath.2022.2.05
- Describing Blaschke Products by Their Critical Points, Extended Abstracts Fall 2019, Volume 12 (2021), p. 89 | DOI:10.1007/978-3-030-74417-5_14
- Critical structures of inner functions, Journal of Functional Analysis, Volume 281 (2021) no. 8, p. 109138 | DOI:10.1016/j.jfa.2021.109138
- Boundary Gauss–Lucas type theorems on the disk, Journal d'Analyse Mathématique, Volume 138 (2019) no. 2, p. 717 | DOI:10.1007/s11854-019-0042-6
- Prescribing inner parts of derivatives of inner functions, Journal d'Analyse Mathématique, Volume 139 (2019) no. 2, p. 495 | DOI:10.1007/s11854-019-0064-0
- Inner Functions and Inner Factors of Their Derivatives, Integral Equations and Operator Theory, Volume 82 (2015) no. 2, p. 151 | DOI:10.1007/s00020-015-2231-8
Cité par 7 documents. Sources : Crossref
Commentaires - Politique