Comptes Rendus
Geometry/Differential geometry
Blowing-up points on locally conformally balanced manifolds
Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 715-718.

In this note, we show that the blowing-up of a point on a locally conformally balanced manifold also admits a locally conformally Balanced manifold structure.

Dans cette note, nous montrons que l'éclatement d'un point dans une variété localement conformément équilibrée admet aussi une structure de variété localement conformément équilibrée.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.07.005

Zhao Lian 1; Song Yang 1

1 Department of Mathematics, Sichuan University, Chengdu, 610064 Sichuan, People's Republic of China
@article{CRMATH_2014__352_9_715_0,
     author = {Zhao Lian and Song Yang},
     title = {Blowing-up points on locally conformally balanced manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {715--718},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.07.005},
     language = {en},
}
TY  - JOUR
AU  - Zhao Lian
AU  - Song Yang
TI  - Blowing-up points on locally conformally balanced manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 715
EP  - 718
VL  - 352
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2014.07.005
LA  - en
ID  - CRMATH_2014__352_9_715_0
ER  - 
%0 Journal Article
%A Zhao Lian
%A Song Yang
%T Blowing-up points on locally conformally balanced manifolds
%J Comptes Rendus. Mathématique
%D 2014
%P 715-718
%V 352
%N 9
%I Elsevier
%R 10.1016/j.crma.2014.07.005
%G en
%F CRMATH_2014__352_9_715_0
Zhao Lian; Song Yang. Blowing-up points on locally conformally balanced manifolds. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 715-718. doi : 10.1016/j.crma.2014.07.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.07.005/

[1] A. Fino; A. Tomassini On astheno-Kähler metrics, J. Lond. Math. Soc., Volume 83 (2011), pp. 290-308

[2] P. Griffiths; J. Harris Principles of Algebraic Geometry, Wiley, New York, 1978

[3] M. Michelsohn On the existence of special metrics in complex geometry, Acta Math., Volume 149 (1982), pp. 261-295

[4] F. Tricerri Some examples of locally conformal Kähler manifolds, Rend. Semin. Mat. (Torino), Volume 40 (1982), pp. 81-92

[5] C. Voisin Hodge Theory and Complex Algebraic Geometry I, Cambridge Studies in Advanced Mathematics, vol. 76, Cambridge University Press, 2003

[6] V. Vuletescu Blowing-up points on locally conformally Kähler manifolds, Bull. Math. Soc. Sci. Math. Roum., Volume 52 (2009), pp. 387-390

Cited by Sources:

Comments - Policy