In this note, we show that the blowing-up of a point on a locally conformally balanced manifold also admits a locally conformally Balanced manifold structure.
Dans cette note, nous montrons que l'éclatement d'un point dans une variété localement conformément équilibrée admet aussi une structure de variété localement conformément équilibrée.
Accepted:
Published online:
Zhao Lian 1; Song Yang 1
@article{CRMATH_2014__352_9_715_0, author = {Zhao Lian and Song Yang}, title = {Blowing-up points on locally conformally balanced manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {715--718}, publisher = {Elsevier}, volume = {352}, number = {9}, year = {2014}, doi = {10.1016/j.crma.2014.07.005}, language = {en}, }
Zhao Lian; Song Yang. Blowing-up points on locally conformally balanced manifolds. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 715-718. doi : 10.1016/j.crma.2014.07.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.07.005/
[1] On astheno-Kähler metrics, J. Lond. Math. Soc., Volume 83 (2011), pp. 290-308
[2] Principles of Algebraic Geometry, Wiley, New York, 1978
[3] On the existence of special metrics in complex geometry, Acta Math., Volume 149 (1982), pp. 261-295
[4] Some examples of locally conformal Kähler manifolds, Rend. Semin. Mat. (Torino), Volume 40 (1982), pp. 81-92
[5] Hodge Theory and Complex Algebraic Geometry I, Cambridge Studies in Advanced Mathematics, vol. 76, Cambridge University Press, 2003
[6] Blowing-up points on locally conformally Kähler manifolds, Bull. Math. Soc. Sci. Math. Roum., Volume 52 (2009), pp. 387-390
Cited by Sources:
Comments - Policy