We prove that if pure derivatives of a function on are complex measures, then their lower Hausdorff dimension is at least . The derivatives with respect to different coordinates may be of different order.
Supposons que les dérivées pures (pas nécéssairement du même ordre) d'une fonction sur soient des mesures de Radon finies. On montre que leur dimension inférieure de Hausdorf est alors au moins .
Accepted:
Published online:
Dmitriy M. Stolyarov 1, 2; Michal Wojciechowski 3
@article{CRMATH_2014__352_10_791_0, author = {Dmitriy M. Stolyarov and Michal Wojciechowski}, title = {Dimension of gradient measures}, journal = {Comptes Rendus. Math\'ematique}, pages = {791--795}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.08.011}, language = {en}, }
Dmitriy M. Stolyarov; Michal Wojciechowski. Dimension of gradient measures. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 791-795. doi : 10.1016/j.crma.2014.08.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.08.011/
[1] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, 2000
[2] Integral Representations of Functions and Embedding Theorems, 1975
[3] New estimates for the Laplacian, the div–curl, and related Hodge systems, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 539-543
[4] Spaces of smooth functions generated by nonhomogeneous differential expressions, Funkc. Anal. Prilozh., Volume 47 (2013) no. 2, pp. 89-92
[5] On an embedding of Sobolev spaces, Mat. Zametki, Volume 54 (1993) no. 3, pp. 48-71 (in Russian)
[6] Estimates of Fourier transform in Sobolev spaces, Stud. Math., Volume 125 (1997) no. 1, pp. 67-74
[7] Rearrangements of functions and embedding of anisotropic spaces of Sobolev type, East J. Approx., Volume 4 (1998) no. 2, pp. 111-198
[8] Introduction to Spaces, Cambridge University Press, Cambridge, UK, 1998
[9] Geometry of Sets and Measures in Euclidean Space, Cambridge University Press, Cambridge, UK, 1995
[10] New Thoughts on Besov Spaces, Duke University Mathematical Series, vol. I, Duke University, Durham, NC, USA, 1976
[11] Singularity of vector valued measures in terms of Fourier transform, J. Fourier Anal. Appl., Volume 12 (2006) no. 2, pp. 213-223
[12] On certain inequalities for functions belonging to -classes, Zap. Nauč. Semin. LOMI, Volume 27 (1972), pp. 194-210 (in Russian)
[13] A constructive proof of the Fefferman–Stein decomposition of , Acta Math., Volume 148 (1982) no. 1, pp. 215-241
[14] Estimates for -vector fields, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 181-186
[15] Limiting Sobolev inequalities for vector fields and canceling linear differential operators, J. Eur. Math. Soc., Volume 15 (2013) no. 3, pp. 877-921
Cited by Sources:
Comments - Policy