Comptes Rendus
Mathematical analysis/Functional analysis
Dimension of gradient measures
[La dimension de mesures qui constituent le gradient d'une fonction]
Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 791-795.

Supposons que les dérivées pures (pas nécéssairement du même ordre) d'une fonction sur Rn soient des mesures de Radon finies. On montre que leur dimension inférieure de Hausdorf est alors au moins n1.

We prove that if pure derivatives of a function on Rn are complex measures, then their lower Hausdorff dimension is at least n1. The derivatives with respect to different coordinates may be of different order.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.08.011
Dmitriy M. Stolyarov 1, 2 ; Michal Wojciechowski 3

1 St. Petersburg Department of Steklov Mathematical Institute RAS, Fontanka 27, St. Petersburg, Russia
2 Chebyshev Laboratory (SPbU), 14th Line 29B, Vasilyevsky Island, St. Petersburg, Russia
3 Institute of Mathematics, Polish Academy of Sciences, 00-956 Warszawa, Poland
@article{CRMATH_2014__352_10_791_0,
     author = {Dmitriy M. Stolyarov and Michal Wojciechowski},
     title = {Dimension of gradient measures},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {791--795},
     publisher = {Elsevier},
     volume = {352},
     number = {10},
     year = {2014},
     doi = {10.1016/j.crma.2014.08.011},
     language = {en},
}
TY  - JOUR
AU  - Dmitriy M. Stolyarov
AU  - Michal Wojciechowski
TI  - Dimension of gradient measures
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 791
EP  - 795
VL  - 352
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2014.08.011
LA  - en
ID  - CRMATH_2014__352_10_791_0
ER  - 
%0 Journal Article
%A Dmitriy M. Stolyarov
%A Michal Wojciechowski
%T Dimension of gradient measures
%J Comptes Rendus. Mathématique
%D 2014
%P 791-795
%V 352
%N 10
%I Elsevier
%R 10.1016/j.crma.2014.08.011
%G en
%F CRMATH_2014__352_10_791_0
Dmitriy M. Stolyarov; Michal Wojciechowski. Dimension of gradient measures. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 791-795. doi : 10.1016/j.crma.2014.08.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.08.011/

[1] L. Ambrosio; N. Fusco; D. Pallara Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, 2000

[2] O.V. Besov; V.P. Il'in; S.M. Nikolski Integral Representations of Functions and Embedding Theorems, 1975

[3] J. Bourgain; H. Brezis New estimates for the Laplacian, the div–curl, and related Hodge systems, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 539-543

[4] S.V. Kislyakov; D.V. Maksimov; D.M. Stolyarov Spaces of smooth functions generated by nonhomogeneous differential expressions, Funkc. Anal. Prilozh., Volume 47 (2013) no. 2, pp. 89-92

[5] V.I. Kolyada On an embedding of Sobolev spaces, Mat. Zametki, Volume 54 (1993) no. 3, pp. 48-71 (in Russian)

[6] V.I. Kolyada Estimates of Fourier transform in Sobolev spaces, Stud. Math., Volume 125 (1997) no. 1, pp. 67-74

[7] V.I. Kolyada Rearrangements of functions and embedding of anisotropic spaces of Sobolev type, East J. Approx., Volume 4 (1998) no. 2, pp. 111-198

[8] P. Koosis Introduction to Hp Spaces, Cambridge University Press, Cambridge, UK, 1998

[9] P. Mattila Geometry of Sets and Measures in Euclidean Space, Cambridge University Press, Cambridge, UK, 1995

[10] J. Peetre New Thoughts on Besov Spaces, Duke University Mathematical Series, vol. I, Duke University, Durham, NC, USA, 1976

[11] M. Roginskaya; M. Wojciechowski Singularity of vector valued measures in terms of Fourier transform, J. Fourier Anal. Appl., Volume 12 (2006) no. 2, pp. 213-223

[12] V.A. Solonnikov On certain inequalities for functions belonging to Wp(Rn)-classes, Zap. Nauč. Semin. LOMI, Volume 27 (1972), pp. 194-210 (in Russian)

[13] A. Uchiyama A constructive proof of the Fefferman–Stein decomposition of BMO(Rn), Acta Math., Volume 148 (1982) no. 1, pp. 215-241

[14] J. van Schaftingen Estimates for L1-vector fields, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 181-186

[15] J. van Schaftingen Limiting Sobolev inequalities for vector fields and canceling linear differential operators, J. Eur. Math. Soc., Volume 15 (2013) no. 3, pp. 877-921

Cité par Sources :

Commentaires - Politique