[La dimension de mesures qui constituent le gradient d'une fonction]
Supposons que les dérivées pures (pas nécéssairement du même ordre) d'une fonction sur
We prove that if pure derivatives of a function on
Accepté le :
Publié le :
Dmitriy M. Stolyarov 1, 2 ; Michal Wojciechowski 3
@article{CRMATH_2014__352_10_791_0, author = {Dmitriy M. Stolyarov and Michal Wojciechowski}, title = {Dimension of gradient measures}, journal = {Comptes Rendus. Math\'ematique}, pages = {791--795}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.08.011}, language = {en}, }
Dmitriy M. Stolyarov; Michal Wojciechowski. Dimension of gradient measures. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 791-795. doi : 10.1016/j.crma.2014.08.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.08.011/
[1] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, 2000
[2] Integral Representations of Functions and Embedding Theorems, 1975
[3] New estimates for the Laplacian, the div–curl, and related Hodge systems, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 539-543
[4] Spaces of smooth functions generated by nonhomogeneous differential expressions, Funkc. Anal. Prilozh., Volume 47 (2013) no. 2, pp. 89-92
[5] On an embedding of Sobolev spaces, Mat. Zametki, Volume 54 (1993) no. 3, pp. 48-71 (in Russian)
[6] Estimates of Fourier transform in Sobolev spaces, Stud. Math., Volume 125 (1997) no. 1, pp. 67-74
[7] Rearrangements of functions and embedding of anisotropic spaces of Sobolev type, East J. Approx., Volume 4 (1998) no. 2, pp. 111-198
[8] Introduction to
[9] Geometry of Sets and Measures in Euclidean Space, Cambridge University Press, Cambridge, UK, 1995
[10] New Thoughts on Besov Spaces, Duke University Mathematical Series, vol. I, Duke University, Durham, NC, USA, 1976
[11] Singularity of vector valued measures in terms of Fourier transform, J. Fourier Anal. Appl., Volume 12 (2006) no. 2, pp. 213-223
[12] On certain inequalities for functions belonging to
[13] A constructive proof of the Fefferman–Stein decomposition of
[14] Estimates for
[15] Limiting Sobolev inequalities for vector fields and canceling linear differential operators, J. Eur. Math. Soc., Volume 15 (2013) no. 3, pp. 877-921
- Frostman lemma revisited, Annales Fennici Mathematici, Volume 49 (2024) no. 1, pp. 303-318 | DOI:10.54330/afm.145356 | Zbl:7871762
- Two approximation results for divergence free measures, Portugaliae Mathematica, Volume 81 (2024) no. 3-4, pp. 247-264 | DOI:10.4171/pm/2126 | Zbl:1548.42042
- On dimension stable spaces of measures, arXiv (2024) | DOI:10.48550/arxiv.2405.10728 | arXiv:2405.10728
- Dimension estimates for vectorial measures with restricted spectrum, Journal of Functional Analysis, Volume 284 (2023) no. 1, p. 16 (Id/No 109735) | DOI:10.1016/j.jfa.2022.109735 | Zbl:1550.28002
- On finite configurations in the spectra of singular measures, Mathematische Zeitschrift, Volume 304 (2023) no. 1, p. 17 (Id/No 6) | DOI:10.1007/s00209-023-03257-y | Zbl:1547.28008
- On dimension and regularity of vector-valued measures under Fourier analytic constraints, Illinois Journal of Mathematics, Volume 66 (2022) no. 3, pp. 289-313 | DOI:10.1215/00192082-10018154 | Zbl:1516.42008
- Hardy-Littlewood-Sobolev inequality for p=1, Sbornik: Mathematics, Volume 213 (2022) no. 6, pp. 844-889 | DOI:10.1070/sm9645
- Неравенство Харди-Литтлвуда-Соболева в случае
, Математический сборник, Volume 213 (2022) no. 6, p. 125 | DOI:10.4213/sm9645 - Hausdorff dimension of measures with arithmetically restricted spectrum, Annales Fennici Mathematici, Volume 46 (2021) no. 1, pp. 537-551 | DOI:10.5186/aasfm.2021.4641 | Zbl:1478.28003
- Sobolev martingales, Revista Matemática Iberoamericana, Volume 37 (2021) no. 4, pp. 1225-1246 | DOI:10.4171/rmi/1224 | Zbl:1489.60071
Cité par 10 documents. Sources : Crossref, NASA ADS, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier