We obtain upper Gaussian estimates of transition probabilities of inhomogeneous random walks on the positive quadrant. Among the most important steps in our proof are comparison arguments based on discrete variants of the Harnack principle and large deviations estimates.
Nous obtenons une estimation gaussienne supérieure des probabilités de transition d'une marche aléatoire hétérogène dans le quadrant positif. Les ingrédients essentiels de notre preuve sont des arguments de comparaison basés sur des variantes discrètes du principe de Harnack et des estimations du type grandes déviations.
Accepted:
Published online:
Néjib Ben Salem 1; Sami Mustapha 2; Mohamed Sifi 1
@article{CRMATH_2014__352_10_797_0, author = {N\'ejib Ben Salem and Sami Mustapha and Mohamed Sifi}, title = {Survival time of a heterogeneous random walk in a quadrant}, journal = {Comptes Rendus. Math\'ematique}, pages = {797--801}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.08.016}, language = {en}, }
TY - JOUR AU - Néjib Ben Salem AU - Sami Mustapha AU - Mohamed Sifi TI - Survival time of a heterogeneous random walk in a quadrant JO - Comptes Rendus. Mathématique PY - 2014 SP - 797 EP - 801 VL - 352 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2014.08.016 LA - en ID - CRMATH_2014__352_10_797_0 ER -
Néjib Ben Salem; Sami Mustapha; Mohamed Sifi. Survival time of a heterogeneous random walk in a quadrant. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 797-801. doi : 10.1016/j.crma.2014.08.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.08.016/
[1] Walks in the quarter plane: Krewera's algebraic model, Ann. Appl. Probab., Volume 15 (2005), pp. 1451-1491
[2] Walks with small steps in the quarter plane, Contemp. Math., Volume 520 (2010), pp. 1-40
[3] Random walks in cones, Ann. Probab. (2014) (in press)
[4] Random Walks in the Quarter-Plane – Algebraic Methods, Boundary Value Problems and Applications, Appl. Math., vol. 40, Springer-Verlag, Berlin, 1999
[5] Random walks in the quarter plane, Bull. Soc. Math. Fr., Volume 139 (2011), pp. 341-387
[6] Extinction probabilities for a distylous plant population modeled by an inhomogeneous random walk on the positive quadrant, SIAM J. Appl. Math., Volume 73 (2013), pp. 700-722
[7] Intersections of Random Walks, Birkhäuser/Springer, New York, 2013
[8] Moments of exit times from wedges for non-homogeneous random walks with asymptotically zero drifts, J. Theor. Probab., Volume 26 (2013) no. 1, pp. 1-30
[9] Gaussian estimates for stability inhomogeneous random walks on , Ann. Probab., Volume 34 (2006) no. 1, pp. 264-283
[10] Gambler's ruin estimates for random walks with symmetric spatially inhomogeneous increments, Bernoulli, Volume 13 (2007) no. 1, pp. 131-147
[11] Green functions and Martin compactification for killed random walks related to SU(3), Electron. Commun. Probab., Volume 15 (2010), pp. 176-190
[12] Green functions for killed random walks in the Weyl chamber of Sp(4), Ann. Inst. Henri Poincaré Probab. Stat., Volume 47 (2011), pp. 1001-1019
[13] Random walks in the quarter plane, discrete harmonic functions and conformal mappings, Stoch. Process. Appl., Volume 124 (2014), pp. 3147-3178 (with an appendix by Sandro Franceschi)
[14] Potential theory in conical domains, Math. Proc. Camb. Philos. Soc., Volume 125 (1999), pp. 335-384
[15] Potential theory in conical domains II, Math. Proc. Camb. Philos. Soc., Volume 129 (2000), pp. 301-319
Cited by Sources:
Comments - Policy