Comptes Rendus
Potential theory/Probability theory
Survival time of a heterogeneous random walk in a quadrant
Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 797-801.

We obtain upper Gaussian estimates of transition probabilities of inhomogeneous random walks on the positive quadrant. Among the most important steps in our proof are comparison arguments based on discrete variants of the Harnack principle and large deviations estimates.

Nous obtenons une estimation gaussienne supérieure des probabilités de transition d'une marche aléatoire hétérogène dans le quadrant positif. Les ingrédients essentiels de notre preuve sont des arguments de comparaison basés sur des variantes discrètes du principe de Harnack et des estimations du type grandes déviations.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.08.016

Néjib Ben Salem 1; Sami Mustapha 2; Mohamed Sifi 1

1 Université de Tunis El Manar, Faculté des Sciences de Tunis, LR11ES11 Laboratoire d'analyse mathématiques et applications, 2092 Tunis, Tunisia
2 Centre de mathématiques de Jussieu, Université Pierre-et-Marie-Curie (Paris-6), tour 46, 5
@article{CRMATH_2014__352_10_797_0,
     author = {N\'ejib Ben Salem and Sami Mustapha and Mohamed Sifi},
     title = {Survival time of a heterogeneous random walk in a quadrant},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {797--801},
     publisher = {Elsevier},
     volume = {352},
     number = {10},
     year = {2014},
     doi = {10.1016/j.crma.2014.08.016},
     language = {en},
}
TY  - JOUR
AU  - Néjib Ben Salem
AU  - Sami Mustapha
AU  - Mohamed Sifi
TI  - Survival time of a heterogeneous random walk in a quadrant
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 797
EP  - 801
VL  - 352
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2014.08.016
LA  - en
ID  - CRMATH_2014__352_10_797_0
ER  - 
%0 Journal Article
%A Néjib Ben Salem
%A Sami Mustapha
%A Mohamed Sifi
%T Survival time of a heterogeneous random walk in a quadrant
%J Comptes Rendus. Mathématique
%D 2014
%P 797-801
%V 352
%N 10
%I Elsevier
%R 10.1016/j.crma.2014.08.016
%G en
%F CRMATH_2014__352_10_797_0
Néjib Ben Salem; Sami Mustapha; Mohamed Sifi. Survival time of a heterogeneous random walk in a quadrant. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 797-801. doi : 10.1016/j.crma.2014.08.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.08.016/

[1] M. Bousquet-Mélou Walks in the quarter plane: Krewera's algebraic model, Ann. Appl. Probab., Volume 15 (2005), pp. 1451-1491

[2] M. Bousquet-Mélou; M. Mishna Walks with small steps in the quarter plane, Contemp. Math., Volume 520 (2010), pp. 1-40

[3] D. Denisov; V. Wachtel Random walks in cones, Ann. Probab. (2014) (in press)

[4] G. Fayolle; R. Iasnogorodski; V. Malyshev Random Walks in the Quarter-Plane – Algebraic Methods, Boundary Value Problems and Applications, Appl. Math., vol. 40, Springer-Verlag, Berlin, 1999

[5] I. Kurkova; K. Rashel Random walks in the quarter plane, Bull. Soc. Math. Fr., Volume 139 (2011), pp. 341-387

[6] P. Lafitte-Godillon; K. Raschel; V.C. Tran Extinction probabilities for a distylous plant population modeled by an inhomogeneous random walk on the positive quadrant, SIAM J. Appl. Math., Volume 73 (2013), pp. 700-722

[7] G.F. Lawler Intersections of Random Walks, Birkhäuser/Springer, New York, 2013

[8] I.M. MacPhee; M.V. Menshikov; A.R. Wade Moments of exit times from wedges for non-homogeneous random walks with asymptotically zero drifts, J. Theor. Probab., Volume 26 (2013) no. 1, pp. 1-30

[9] S. Mustapha Gaussian estimates for stability inhomogeneous random walks on Zd, Ann. Probab., Volume 34 (2006) no. 1, pp. 264-283

[10] S. Mustapha Gambler's ruin estimates for random walks with symmetric spatially inhomogeneous increments, Bernoulli, Volume 13 (2007) no. 1, pp. 131-147

[11] K. Raschel Green functions and Martin compactification for killed random walks related to SU(3), Electron. Commun. Probab., Volume 15 (2010), pp. 176-190

[12] K. Raschel Green functions for killed random walks in the Weyl chamber of Sp(4), Ann. Inst. Henri Poincaré Probab. Stat., Volume 47 (2011), pp. 1001-1019

[13] K. Raschel Random walks in the quarter plane, discrete harmonic functions and conformal mappings, Stoch. Process. Appl., Volume 124 (2014), pp. 3147-3178 (with an appendix by Sandro Franceschi)

[14] N.Th. Varopoulos Potential theory in conical domains, Math. Proc. Camb. Philos. Soc., Volume 125 (1999), pp. 335-384

[15] N.Th. Varopoulos Potential theory in conical domains II, Math. Proc. Camb. Philos. Soc., Volume 129 (2000), pp. 301-319

Cited by Sources:

Comments - Policy