Comptes Rendus
Combinatorics/Algebra
The algebra of Hurwitz multizeta functions
Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 865-869.

Multizeta values are real numbers that span a complicated algebra: there exist two different interacting products. A functional analog of these numbers is defined so as to obtain a better understanding of them, the Hurwitz multizeta functions, which span an algebra for which a precise description is wanted. In this note, we prove that the algebra of Hurwitz multizeta functions is a polynomial algebra.

Les multizêtas sont des nombres réels possédant une structure d'algèbre complexe : il existe deux produits interagissant. Il est naturel de définir un analogue fonctionnel de ces nombres pour en avoir une meilleure compréhension, ce qui conduit aux multizêtas de Hurwitz, dont on souhaiterait connaître précisémment la structure d'algèbre. Dans cette note, nous montrons que l'algèbre des multizêtas de Hurwitz est une algèbre de polynômes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.09.006

Olivier Bouillot 1

1 Laboratoire d'informatique Gaspard-Monge (LIGM), Université Paris-Est Marne-la-Vallée, Cité Descartes, 5, bd Descartes, 77454 Marne-la-Vallée cedex 2, France
@article{CRMATH_2014__352_11_865_0,
     author = {Olivier Bouillot},
     title = {The algebra of {Hurwitz} multizeta functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {865--869},
     publisher = {Elsevier},
     volume = {352},
     number = {11},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.006},
     language = {en},
}
TY  - JOUR
AU  - Olivier Bouillot
TI  - The algebra of Hurwitz multizeta functions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 865
EP  - 869
VL  - 352
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2014.09.006
LA  - en
ID  - CRMATH_2014__352_11_865_0
ER  - 
%0 Journal Article
%A Olivier Bouillot
%T The algebra of Hurwitz multizeta functions
%J Comptes Rendus. Mathématique
%D 2014
%P 865-869
%V 352
%N 11
%I Elsevier
%R 10.1016/j.crma.2014.09.006
%G en
%F CRMATH_2014__352_11_865_0
Olivier Bouillot. The algebra of Hurwitz multizeta functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 865-869. doi : 10.1016/j.crma.2014.09.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.006/

[1] F. Bergeron Algebraic Combinatorics and Coinvariant Spaces, CMS Treatise in Mathematics, CRC Press, Boca Raton, FL, USA, 2009 (221 p)

[2] O. Bouillot Invariants analytiques des difféomorphismes et multizêtas, 2011 (PhD thesis Orsay, France, 291 p)

[3] O. Bouillot The algebra of multitangent functions, J. Algebra, Volume 410 (2014), pp. 148-238

[4] F. Brown Mixed Tate motives over Z, Ann. of Math. (2), Volume 175 (2012) no. 2, pp. 949-976

[5] F. Brown On the decomposition of motivic multiple zeta values (H. Nakamura et al., eds.), Galois–Teichmüller Theory and Arithmetic Geometry, Adv. Stud. Pure Math., vol. 68, 2012, pp. 31-58

[6] P. Cartier Fonctions polylogarithmes, nombres polyzeta et groupes pro-unipotents, Séminaire N. Bourbaki, World Scientific, Singapore, 2000, pp. 137-173 (exp. 885)

[7] K. Ebrahimi-Fard; L. Guo Quasi-shuffles, mixable shuffles and Hopf algebras, J. Algebr. Comb., Volume 24 (2006), pp. 83-101

[8] J.-Y. Enjalbert; H.N. Minh Combinatorial study of colored Hurwitz polyzêtas, Discrete Math., Volume 312 (2013) no. 24, pp. 3489-3497

[9] I. Gessel Multipartite P-partitions and inner products of skew Schur functions, Combinatorics and Algebra, Boulder, CO, USA, 1983, pp. 289-317 Contemp. Math., 34 (1984) 289–301

[10] M. Hoffman Quasi-shuffle products, J. Algebr. Comb., Volume 11 (2000), pp. 49-68

[11] S. Joyner An algebraic version of the Knizhnik–Zamolodchikov equation, Ramanujan J., Volume 28 (2012) no. 3, pp. 361-384

[12] H.N. Minh; G. Jacob; N.E. Oussous; M. Petitot De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées, Sémin. Lothar. Comb., Volume 44 (2000) Art. B44i, 21 p. (electronic)

[13] M.R. Murty; K. Sinha Multiple Hurwitz zeta function, Multiple Dirichlet Series, Automorphic Forms and Analytic Number Theory, Proc. Symp. Pure Math., vol. 75, 2006, pp. 135-156

[14] C. Reutenauer Free Lie Algebras, Lond. Math. Soc. Monogr. New. Ser., vol. 7, Oxford Sciences Publications, Oxford, UK, 1993

[15] M. Waldschmidt Valeurs zêta multiples. Une introduction, J. Théor. Nr. Bordx., Volume 12 (2000), pp. 581-592

[16] V.V. Zudilin Algebraic relations for multiple zeta values, Russ. Math. Surv., Volume 58 (2003), pp. 1-29

Cited by Sources:

Comments - Policy