Comptes Rendus
Mathematical analysis/Differential geometry
On a projectively invariant distance on Finsler spaces of constant negative Ricci scalar
[Sur une distance projectivement invariante dans les espaces d'Einstein–Finsler]
Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 999-1003.

Dans ce travail, une distance intrinsèque projectivement invariante est utilisée pour établir une nouvelle approche en vue de l'étude de la géométrie projective dans les espaces de Finsler. Il est démontré que la distance projectivement invariante définie précédemment est un multiple constant de la distance finslérienne dans le cas où celle-ci est complète (à la fois en avant et en arrière). Par conséquent, deux espaces d'Einstein–Finsler complets à courbure scalaire constante négative sont homothétiques. Évidemment, ceci sera vrai aussi pour les espaces de Finsler à courbure sectionelle constante.

In this work, an intrinsic projectively invariant distance is used to establish a new approach to the study of projective geometry in a Finsler space. It is shown that the projectively invariant distance previously defined is a constant multiple of the Finsler distance when the manifold in question is both forward and backward complete. As a consequence, two projectively related complete Einstein Finsler spaces with constant negative scalar curvature are homothetic. Evidently, this will be true for Finsler spaces of constant flag curvature as well.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.09.011

Maryam Sepasi 1 ; Behroz Bidabad 1

1 Department of Mathematics, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15914, Iran
@article{CRMATH_2014__352_12_999_0,
     author = {Maryam Sepasi and Behroz Bidabad},
     title = {On a projectively invariant distance on {Finsler} spaces of constant negative {Ricci} scalar},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {999--1003},
     publisher = {Elsevier},
     volume = {352},
     number = {12},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.011},
     language = {en},
}
TY  - JOUR
AU  - Maryam Sepasi
AU  - Behroz Bidabad
TI  - On a projectively invariant distance on Finsler spaces of constant negative Ricci scalar
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 999
EP  - 1003
VL  - 352
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2014.09.011
LA  - en
ID  - CRMATH_2014__352_12_999_0
ER  - 
%0 Journal Article
%A Maryam Sepasi
%A Behroz Bidabad
%T On a projectively invariant distance on Finsler spaces of constant negative Ricci scalar
%J Comptes Rendus. Mathématique
%D 2014
%P 999-1003
%V 352
%N 12
%I Elsevier
%R 10.1016/j.crma.2014.09.011
%G en
%F CRMATH_2014__352_12_999_0
Maryam Sepasi; Behroz Bidabad. On a projectively invariant distance on Finsler spaces of constant negative Ricci scalar. Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 999-1003. doi : 10.1016/j.crma.2014.09.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.011/

[1] H. Akbar-Zadeh Sur les espaces de Finsler à courbures sectionnelles constantes, Acad. R. Belg. Bull. Cl. Sci. (5), Volume 14 (1988), pp. 281-322

[2] H. Akbar-Zadeh; R. Couty Transformations projectives des variétés munies d'une connexion métrique, Ann. Mat. Pura Appl., Volume 148 (1987) no. 1, pp. 251-275

[3] D. Bao; S.S. Chern; Z. Shen Riemann–Finsler Geometry, Springer-Verlag, 2000

[4] L. Berwald On the projective geometry of paths, Proc. Edinb. Math. Soc., Volume 5 (1937), pp. 103-115

[5] P. Bourguignon Ricci curvature and Einstein metrics, Global Differential Geometry and Global Analysis, 1979, pp. 42-63

[6] H. Busemann; W. Mayer On the foundations of the calculus of variations, Trans. Amer. Math. Soc., Volume 49 (1941), pp. 173-198

[7] X. Chen; Z. Shen A comparison theorem on the Ricci curvature in projective geometry, Ann. Glob. Anal. Geom., Volume 23 (2003), pp. 141-155

[8] S. Kobayashi Projective invariant metrics for Einstein spaces, Nagoya Math. J., Volume 73 (1979), pp. 171-174

[9] T. Okada On models of projectively flat Finsler spaces of constant negative curvature, Tensor, Volume 40 (1983), pp. 117-124

[10] M. Sepasi; B. Bidabad A comparison theorem on projective Finsler geometry | arXiv

[11] Z. Shen On projectively related Einstein metrics in Riemann–Finsler geometry, Math. Ann., Volume 320 (2001), pp. 625-647

[12] G. Yang Some classes of sprays in projective spray geometry, Differ. Geom. Appl., Volume 29 (2011), pp. 606-614

Cité par Sources :

Commentaires - Politique