Comptes Rendus
Complex analysis
Coefficient estimates for a certain class of analytic and bi-univalent functions defined by fractional derivative
Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 1005-1010.

We introduce and investigate a subclass of analytic and bi-univalent functions defined by a fractional derivative operator in the open unit disk. Using the Faber polynomial expansions, we obtain upper bounds for the coefficients of functions belonging to this class.

Nous introduisons et étudions une classe de fonctions analytiques, bi-univalentes, dans le disque unité, définie par une condition sur des dérivées fractionnaires. En utilisant les développements en termes de polynômes de Faber, nous obtenons des majorations des coefficients des fonctions de cette classe.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.09.022

Gülfem Akın 1; Sevtap Sümer Eker 1

1 Dicle University, Department of Mathematics, Science Faculty, 21280 Diyarbakır, Turkey
@article{CRMATH_2014__352_12_1005_0,
     author = {G\"ulfem Ak{\i}n and Sevtap S\"umer Eker},
     title = {Coefficient estimates for a certain class of analytic and bi-univalent functions defined by fractional derivative},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1005--1010},
     publisher = {Elsevier},
     volume = {352},
     number = {12},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.022},
     language = {en},
}
TY  - JOUR
AU  - Gülfem Akın
AU  - Sevtap Sümer Eker
TI  - Coefficient estimates for a certain class of analytic and bi-univalent functions defined by fractional derivative
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 1005
EP  - 1010
VL  - 352
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2014.09.022
LA  - en
ID  - CRMATH_2014__352_12_1005_0
ER  - 
%0 Journal Article
%A Gülfem Akın
%A Sevtap Sümer Eker
%T Coefficient estimates for a certain class of analytic and bi-univalent functions defined by fractional derivative
%J Comptes Rendus. Mathématique
%D 2014
%P 1005-1010
%V 352
%N 12
%I Elsevier
%R 10.1016/j.crma.2014.09.022
%G en
%F CRMATH_2014__352_12_1005_0
Gülfem Akın; Sevtap Sümer Eker. Coefficient estimates for a certain class of analytic and bi-univalent functions defined by fractional derivative. Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 1005-1010. doi : 10.1016/j.crma.2014.09.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.022/

[1] H. Airault; A. Bouali Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222

[2] H. Airault; J. Ren An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367

[3] R.M. Ali; S.K. Lee; V. Ravichandran; S. Supramaniam Coefficient estimates for bi-univalent Ma–Minda starlike and convex functions, Appl. Math. Lett., Volume 25 (2012), pp. 344-351

[4] D.A. Brannan; T.S. Taha On some classes of bi-univalent functions, Kuwait, February 18–21, 1985 (S.M. Mazhar; A. Hamoui; N.S. Faour, eds.) (KFAS Proceedings Series), Volume vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, UK (1988), pp. 53-60 see also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986) 70–77

[5] E. Deniz Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., Volume 2 (2013), pp. 49-60

[6] P.L. Duren Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983

[7] B.A. Frasin; M.K. Aouf New subclasses of bi-univalent functions, Appl. Math. Lett., Volume 24 (2011), pp. 1569-1573

[8] J.M. Jahangiri; S.G. Hamidi Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., Volume 2013 (2013), p. 190560 (4 p.)

[9] M. Lewin On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68

[10] M.E. Netanyahu The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1, Arch. Ration. Mech. Anal., Volume 32 (1969), pp. 100-112

[11] S. Owa On the distortion theorems I, Kyungpook Math. J., Volume 18 (1978), pp. 53-59

[12] S. Owa; H.M. Srivastava Univalent and starlike generalized hypergeometric functions, Can. J. Math., Volume 39 (1987), pp. 1057-1077

[13] Z.G. Peng; Q.Q. Han On the coefficients of several classes of bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed., Volume 34 (2014), pp. 228-240

[14] H.M. Srivastava Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions (Panos M. Pardalos; Pando G. Georgiev; Hari M. Srivastava, eds.), Nonlinear Analysis: Stability, Approximation, and Inequalities, Springer Series on Optimization and Its Applications, vol. 68, Springer-Verlag, Berlin, Heidelberg and New York, 2012, pp. 607-630

[15] H.M. Srivastava; S. Owa Some characterization and distortion theorems involving fractional calculus, linear operators and certain subclasses of analytic functions, Nagoya Math. J., Volume 106 (1987), pp. 1-28

[16] H.M. Srivastava; S. Owa Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, Ellis Horwood Limited, Chichester and John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1989

[17] H.M. Srivastava; S. Sumer Eker; Rosihan M. Ali Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomant, Volume 29 (2015) (forthcoming)

[18] H.M. Srivastava; A.K. Mishra; P. Gochhayat Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010), pp. 1188-1192

[19] T.S. Taha Topics in univalent function theory, University of London, 1981 (Ph.D. Thesis)

[20] P.G. Todorov On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991) no. 1, pp. 268-276

Cited by Sources:

Comments - Policy