Comptes Rendus
Complex analysis
A continuous link between the disk and half-plane cases of Grace's theorem
Comptes Rendus. Mathématique, Volume 353 (2015) no. 1, pp. 11-15.

We obtain a continuous link between the disk and half-plane cases of Grace's theorem and new, non-circular zero domains that stay invariant under the Schur–Szegő convolution.

On obtient un lien continu entre les cas du disque et du demi-plan dans le théorème de Grace, ainsi que de nouveaux domaines de zéros non cerclés, qui sont invariants par la convolution de Schur–Szegő.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.10.017

Martin Lamprecht 1

1 Department of Computer Science and Engineering, European University of Cyprus, Diogenous Str. 6, Engomi, P.O. Box 22006, 1516 Nicosia, Cyprus
@article{CRMATH_2015__353_1_11_0,
     author = {Martin Lamprecht},
     title = {A continuous link between the disk and half-plane cases of {Grace's} theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {11--15},
     publisher = {Elsevier},
     volume = {353},
     number = {1},
     year = {2015},
     doi = {10.1016/j.crma.2014.10.017},
     language = {en},
}
TY  - JOUR
AU  - Martin Lamprecht
TI  - A continuous link between the disk and half-plane cases of Grace's theorem
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 11
EP  - 15
VL  - 353
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2014.10.017
LA  - en
ID  - CRMATH_2015__353_1_11_0
ER  - 
%0 Journal Article
%A Martin Lamprecht
%T A continuous link between the disk and half-plane cases of Grace's theorem
%J Comptes Rendus. Mathématique
%D 2015
%P 11-15
%V 353
%N 1
%I Elsevier
%R 10.1016/j.crma.2014.10.017
%G en
%F CRMATH_2015__353_1_11_0
Martin Lamprecht. A continuous link between the disk and half-plane cases of Grace's theorem. Comptes Rendus. Mathématique, Volume 353 (2015) no. 1, pp. 11-15. doi : 10.1016/j.crma.2014.10.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.10.017/

[1] J. Borcea; P. Brändén Pólya–Schur master theorems for circular domains and their boundaries, Ann. Math. (2), Volume 170 (2009) no. 1, pp. 465-492

[2] J.H. Grace The zeros of a polynomial, Proc. Camb. Philos. Soc., Volume 11 (1900–1902), pp. 352-357

[3] Q.I. Rahman; G. Schmeisser Analytic Theory of Polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press Oxford University Press, Oxford, UK, 2002

[4] S. Ruscheweyh; L. Salinas Universally prestarlike functions as convolution multipliers, Math. Z., Volume 263 (2009) no. 3, pp. 607-617

[5] S. Ruscheweyh; L. Salinas New Pólya–Schoenberg type theorems, J. Math. Anal. Appl., Volume 363 (2010) no. 2, pp. 481-496

[6] S. Ruscheweyh; L. Salinas; T. Sugawa Completely monotone sequences and universally prestarlike functions, Isr. J. Math., Volume 171 (2009) no. 1, pp. 285-304

[7] G. Szegő Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z., Volume 13 (1922), pp. 28-55

Cited by Sources:

Comments - Policy