Making use of the Faber polynomial coefficient expansions to a class of meromorphic bi-univalent functions, we obtain the general coefficient estimates for such functions and study their initial coefficient bounds. The coefficient bounds presented here are new in their own kind.
Utilisant les développements des coefficients en termes de polynômes de Faber, nous obtenons des estimations du coefficient général des éléments d'une classe de fonctions méromorphes bi-univalentes. Nous étudions aussi les bornes pour leurs coefficients initiaux. Les bornes présentées ici sont nouvelles dans leur genre.
Accepted:
Published online:
Serap Bulut 1; Nanjundan Magesh 2; Vittalrao Kupparao Balaji 3
@article{CRMATH_2015__353_2_113_0, author = {Serap Bulut and Nanjundan Magesh and Vittalrao Kupparao Balaji}, title = {Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {113--116}, publisher = {Elsevier}, volume = {353}, number = {2}, year = {2015}, doi = {10.1016/j.crma.2014.10.019}, language = {en}, }
TY - JOUR AU - Serap Bulut AU - Nanjundan Magesh AU - Vittalrao Kupparao Balaji TI - Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions JO - Comptes Rendus. Mathématique PY - 2015 SP - 113 EP - 116 VL - 353 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2014.10.019 LA - en ID - CRMATH_2015__353_2_113_0 ER -
%0 Journal Article %A Serap Bulut %A Nanjundan Magesh %A Vittalrao Kupparao Balaji %T Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions %J Comptes Rendus. Mathématique %D 2015 %P 113-116 %V 353 %N 2 %I Elsevier %R 10.1016/j.crma.2014.10.019 %G en %F CRMATH_2015__353_2_113_0
Serap Bulut; Nanjundan Magesh; Vittalrao Kupparao Balaji. Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions. Comptes Rendus. Mathématique, Volume 353 (2015) no. 2, pp. 113-116. doi : 10.1016/j.crma.2014.10.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.10.019/
[1] Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222
[2] An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367
[3] Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., Volume 25 (2012) no. 3, pp. 344-351
[4] On some classes of bi-univalent functions, Stud. Univ. Babeş–Bolyai, Math., Volume 31 (1986) no. 2, pp. 70-77
[5] Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., Volume 43 (2013) no. 2, pp. 59-65
[6] Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 6, pp. 479-484
[7] Coefficient bounds for new subclasses of bi-univalent functions, Filomat, Volume 27 (2013) no. 7, pp. 1165-1171
[8] Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983
[9] Über polynomische Entwickelungen, Math. Ann., Volume 57 (1903) no. 3, pp. 389-408
[10] New subclasses of bi-univalent functions, Appl. Math. Lett., Volume 24 (2011) no. 9, pp. 1569-1573
[11] The Bieberbach Conjecture, AMS/IP Studies in Advanced Mathematics, vol. 12, Amer. Math. Soc., Providence, RI, USA, 1999 (translated from the 1989 Chinese original and revised by the author)
[12] Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 9–10, pp. 349-352
[13] Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci., Volume 2013 (2013) (Art. ID 498159, 4 p)
[14] On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68
[15] Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann., Volume 89 (1923) no. 1–2, pp. 103-121
[16] The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in , Arch. Ration. Mech. Anal., Volume 32 (1969), pp. 100-112
[17] H. Orhan, N. Magesh, V.K. Balaji, Initial coefficient bounds for certain classes of meromorphic bi-univalent functions, preprint.
[18] Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, Volume 27 (2013) no. 5, pp. 831-842
[19] Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010) no. 10, pp. 1188-1192
[20] On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991) no. 1, pp. 268-276
Cited by Sources:
Comments - Policy