Comptes Rendus
Complex analysis
Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions
Comptes Rendus. Mathématique, Volume 353 (2015) no. 2, pp. 113-116.

Making use of the Faber polynomial coefficient expansions to a class of meromorphic bi-univalent functions, we obtain the general coefficient estimates for such functions and study their initial coefficient bounds. The coefficient bounds presented here are new in their own kind.

Utilisant les développements des coefficients en termes de polynômes de Faber, nous obtenons des estimations du coefficient général des éléments d'une classe de fonctions méromorphes bi-univalentes. Nous étudions aussi les bornes pour leurs coefficients initiaux. Les bornes présentées ici sont nouvelles dans leur genre.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.10.019

Serap Bulut 1; Nanjundan Magesh 2; Vittalrao Kupparao Balaji 3

1 Kocaeli University, Civil Aviation College, Arslanbey Campus, TR-41285 İzmit-Kocaeli, Turkey
2 Post-Graduate and Research Department of Mathematics, Government Arts College for Men, Krishnagiri 635001, Tamilnadu, India
3 Department of Mathematics, L.N. Govt College, Ponneri, Chennai, Tamilnadu, India
@article{CRMATH_2015__353_2_113_0,
     author = {Serap Bulut and Nanjundan Magesh and Vittalrao Kupparao Balaji},
     title = {Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {113--116},
     publisher = {Elsevier},
     volume = {353},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crma.2014.10.019},
     language = {en},
}
TY  - JOUR
AU  - Serap Bulut
AU  - Nanjundan Magesh
AU  - Vittalrao Kupparao Balaji
TI  - Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 113
EP  - 116
VL  - 353
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2014.10.019
LA  - en
ID  - CRMATH_2015__353_2_113_0
ER  - 
%0 Journal Article
%A Serap Bulut
%A Nanjundan Magesh
%A Vittalrao Kupparao Balaji
%T Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions
%J Comptes Rendus. Mathématique
%D 2015
%P 113-116
%V 353
%N 2
%I Elsevier
%R 10.1016/j.crma.2014.10.019
%G en
%F CRMATH_2015__353_2_113_0
Serap Bulut; Nanjundan Magesh; Vittalrao Kupparao Balaji. Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions. Comptes Rendus. Mathématique, Volume 353 (2015) no. 2, pp. 113-116. doi : 10.1016/j.crma.2014.10.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.10.019/

[1] H. Airault; A. Bouali Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222

[2] H. Airault; J. Ren An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367

[3] R.M. Ali; S.K. Lee; V. Ravichandran; S. Supramaniam Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., Volume 25 (2012) no. 3, pp. 344-351

[4] D.A. Brannan; T.S. Taha On some classes of bi-univalent functions, Stud. Univ. Babeş–Bolyai, Math., Volume 31 (1986) no. 2, pp. 70-77

[5] S. Bulut Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., Volume 43 (2013) no. 2, pp. 59-65

[6] S. Bulut Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 6, pp. 479-484

[7] M. Çağlar; H. Orhan; N. Yağmur Coefficient bounds for new subclasses of bi-univalent functions, Filomat, Volume 27 (2013) no. 7, pp. 1165-1171

[8] P.L. Duren Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983

[9] G. Faber Über polynomische Entwickelungen, Math. Ann., Volume 57 (1903) no. 3, pp. 389-408

[10] B.A. Frasin; M.K. Aouf New subclasses of bi-univalent functions, Appl. Math. Lett., Volume 24 (2011) no. 9, pp. 1569-1573

[11] S. Gong The Bieberbach Conjecture, AMS/IP Studies in Advanced Mathematics, vol. 12, Amer. Math. Soc., Providence, RI, USA, 1999 (translated from the 1989 Chinese original and revised by the author)

[12] S.G. Hamidi; S.A. Halim; J.M. Jahangiri Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 9–10, pp. 349-352

[13] S.G. Hamidi; S.A. Halim; J.M. Jahangiri Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci., Volume 2013 (2013) (Art. ID 498159, 4 p)

[14] M. Lewin On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68

[15] K. Löwner Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann., Volume 89 (1923) no. 1–2, pp. 103-121

[16] E. Netanyahu The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1, Arch. Ration. Mech. Anal., Volume 32 (1969), pp. 100-112

[17] H. Orhan, N. Magesh, V.K. Balaji, Initial coefficient bounds for certain classes of meromorphic bi-univalent functions, preprint.

[18] H.M. Srivastava; S. Bulut; M. Çağlar; N. Yağmur Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, Volume 27 (2013) no. 5, pp. 831-842

[19] H.M. Srivastava; A.K. Mishra; P. Gochhayat Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010) no. 10, pp. 1188-1192

[20] P.G. Todorov On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991) no. 1, pp. 268-276

Cited by Sources:

Comments - Policy