We discuss two results about projective representations of fundamental groups of quasiprojective varieties. The first is a realization result that, under a nonresonance assumption, allows us to realize such representations as monodromy representations of flat projective logarithmic connections. The second is a lifting result: any representation as above, after restriction to a Zariski open set and finite pull-back, can be lifted to a linear representation.
Nous discutons deux résultats sur les représentations projectives des groupes fondamentaux de variétés quasi-projectives. Le premier est un résultat de réalisation qui, sous une hypothèse de non-résonance, permet de réaliser ces représentations comme représentations de monodromie de connexions projectives plates logarithmiques. Le second est un résultat de relèvement : après restriction à un ouvert de Zariski et un revêtement fini, toute représentation du type considéré se relève en une représentation linéaire.
Accepted:
Published online:
Gaël Cousin 1
@article{CRMATH_2015__353_2_155_0,
author = {Ga\"el Cousin},
title = {Projective representations of fundamental groups of quasiprojective varieties: a realization and a lifting result},
journal = {Comptes Rendus. Math\'ematique},
pages = {155--159},
year = {2015},
publisher = {Elsevier},
volume = {353},
number = {2},
doi = {10.1016/j.crma.2014.11.011},
language = {en},
}
TY - JOUR AU - Gaël Cousin TI - Projective representations of fundamental groups of quasiprojective varieties: a realization and a lifting result JO - Comptes Rendus. Mathématique PY - 2015 SP - 155 EP - 159 VL - 353 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2014.11.011 LA - en ID - CRMATH_2015__353_2_155_0 ER -
Gaël Cousin. Projective representations of fundamental groups of quasiprojective varieties: a realization and a lifting result. Comptes Rendus. Mathématique, Volume 353 (2015) no. 2, pp. 155-159. doi: 10.1016/j.crma.2014.11.011
[1] Extensions de Deligne pour les croisements normaux, Éléments de la théorie des systèmes différentiels géométriques, Sémin. Congr., vol. 8, Soc. Math. France, Paris, 2004, pp. 149-164
[2] Geometric Theory of Foliations, Birkhäuser Boston Inc., Boston, MA, 1985 (translated from the Portuguese by Sue E. Goodman)
[3] Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, vol. 163, Springer-Verlag, Berlin, 1970
[4] Projective bundles on a complex torus, J. Reine Angew. Math., Volume 340 (1983), pp. 1-5
[5] Logarithmic projective connections, Tokyo J. Math., Volume 16 (1993) no. 1, pp. 99-119
[6] Characterization of Abelian varieties, Compos. Math., Volume 43 (1981) no. 2, pp. 253-276
[7] Transversely projective foliations on surfaces: existence of minimal form and prescription of monodromy, Int. J. Math., Volume 18 (2007) no. 6, pp. 723-747
[8] Espaces fibrés algébriques, Séminaire Claude-Chevalley, Volume 3 (1958) no. 1, pp. 1-37
Cited by Sources:
Comments - Policy
