Comptes Rendus
Geometry/Topology
Projective representations of fundamental groups of quasiprojective varieties: a realization and a lifting result
Comptes Rendus. Mathématique, Volume 353 (2015) no. 2, pp. 155-159.

We discuss two results about projective representations of fundamental groups of quasiprojective varieties. The first is a realization result that, under a nonresonance assumption, allows us to realize such representations as monodromy representations of flat projective logarithmic connections. The second is a lifting result: any representation as above, after restriction to a Zariski open set and finite pull-back, can be lifted to a linear representation.

Nous discutons deux résultats sur les représentations projectives des groupes fondamentaux de variétés quasi-projectives. Le premier est un résultat de réalisation qui, sous une hypothèse de non-résonance, permet de réaliser ces représentations comme représentations de monodromie de connexions projectives plates logarithmiques. Le second est un résultat de relèvement : après restriction à un ouvert de Zariski et un revêtement fini, toute représentation du type considéré se relève en une représentation linéaire.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.11.011

Gaël Cousin 1

1 Università di Pisa, Dipartimento di Matematica, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
@article{CRMATH_2015__353_2_155_0,
     author = {Ga\"el Cousin},
     title = {Projective representations of fundamental groups of quasiprojective varieties: a realization and a lifting result},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {155--159},
     publisher = {Elsevier},
     volume = {353},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crma.2014.11.011},
     language = {en},
}
TY  - JOUR
AU  - Gaël Cousin
TI  - Projective representations of fundamental groups of quasiprojective varieties: a realization and a lifting result
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 155
EP  - 159
VL  - 353
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2014.11.011
LA  - en
ID  - CRMATH_2015__353_2_155_0
ER  - 
%0 Journal Article
%A Gaël Cousin
%T Projective representations of fundamental groups of quasiprojective varieties: a realization and a lifting result
%J Comptes Rendus. Mathématique
%D 2015
%P 155-159
%V 353
%N 2
%I Elsevier
%R 10.1016/j.crma.2014.11.011
%G en
%F CRMATH_2015__353_2_155_0
Gaël Cousin. Projective representations of fundamental groups of quasiprojective varieties: a realization and a lifting result. Comptes Rendus. Mathématique, Volume 353 (2015) no. 2, pp. 155-159. doi : 10.1016/j.crma.2014.11.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.11.011/

[1] J. Briançon Extensions de Deligne pour les croisements normaux, Éléments de la théorie des systèmes différentiels géométriques, Sémin. Congr., vol. 8, Soc. Math. France, Paris, 2004, pp. 149-164

[2] C. Camacho; A. Lins Neto Geometric Theory of Foliations, Birkhäuser Boston Inc., Boston, MA, 1985 (translated from the Portuguese by Sue E. Goodman)

[3] P. Deligne Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, vol. 163, Springer-Verlag, Berlin, 1970

[4] G. Elencwajg; M.S. Narasimhan Projective bundles on a complex torus, J. Reine Angew. Math., Volume 340 (1983), pp. 1-5

[5] M. Kato Logarithmic projective connections, Tokyo J. Math., Volume 16 (1993) no. 1, pp. 99-119

[6] Y. Kawamata Characterization of Abelian varieties, Compos. Math., Volume 43 (1981) no. 2, pp. 253-276

[7] F. Loray; J.V. Pereira Transversely projective foliations on surfaces: existence of minimal form and prescription of monodromy, Int. J. Math., Volume 18 (2007) no. 6, pp. 723-747

[8] J.-P. Serre Espaces fibrés algébriques, Séminaire Claude-Chevalley, Volume 3 (1958) no. 1, pp. 1-37

Cited by Sources:

Comments - Policy