[Loop product and connected Lie group actions]
Let Γ be a connected Lie group, X be Γ-space and the associated homotopy quotient. In this short note, we explain how rational homotopy theory provides explicit computations of the loop product on and we construct an example where this product is trivial or not depending on the given action.
Soient Γ un groupe de Lie connexe, X un Γ-espace et le quotient homotopique associé. Dans cette note, nous expliquons comment calculer le produit de Chas–Sullivan sur et nous construisons un exemple où ce produit est nul ou non suivant l'action du groupe Γ.
Accepted:
Published online:
Hilaire George Mbiakop 1
@article{CRMATH_2015__353_5_459_0, author = {Hilaire George Mbiakop}, title = {Produit de {Chas{\textendash}Sullivan} et actions d'un groupe de {Lie} connexe}, journal = {Comptes Rendus. Math\'ematique}, pages = {459--463}, publisher = {Elsevier}, volume = {353}, number = {5}, year = {2015}, doi = {10.1016/j.crma.2014.12.010}, language = {fr}, }
Hilaire George Mbiakop. Produit de Chas–Sullivan et actions d'un groupe de Lie connexe. Comptes Rendus. Mathématique, Volume 353 (2015) no. 5, pp. 459-463. doi : 10.1016/j.crma.2014.12.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.12.010/
[1] String topology (Preprint) | arXiv
[2] String topology of classifying spaces, J. Reine Angew. Math., Volume 669 (2012), pp. 1-45
[3] Gorenstein spaces, Adv. Math., Volume 71 (1988), pp. 92-112
[4] Rational Homotopy Theory, Springer-Verlag, 2001
[5] String topology on Gorenstein spaces, Math. Ann., Volume 208 (2009), pp. 417-452
[6] Derived string topology and the Eilenberg–Moore spectral sequence, 2012 (Preprint) | arXiv
[7] Topology of Lie Groups I and II, Transl. Math. Monogr., vol. 91, American Mathematical Society, 1991
Cited by Sources:
Comments - Policy