This Note is concerned with cosymplectic groupoids and their infinitesimal counterparts. Examples of cosymplectic groupoids include those obtained by integrating the 1-jet bundle of some Poisson manifolds endowed with an infinitesimal automorphism.
Cette Note est consacrée aux groupoïdes cosymplectiques et à leurs objets infinitésimaux associés. Des exemples de groupoïdes cosymplectiques sont donnés, en particulier ceux provenant de l'integration du fibré des 1-jets de certaines variétés de Poisson munies d'un automorphisme infinitésimal.
Accepted:
Published online:
Samson Apourewagne Djiba 1; Aïssa Wade 2
@article{CRMATH_2015__353_9_859_0, author = {Samson Apourewagne Djiba and A{\"\i}ssa Wade}, title = {On cosymplectic groupoids}, journal = {Comptes Rendus. Math\'ematique}, pages = {859--863}, publisher = {Elsevier}, volume = {353}, number = {9}, year = {2015}, doi = {10.1016/j.crma.2015.06.017}, language = {en}, }
Samson Apourewagne Djiba; Aïssa Wade. On cosymplectic groupoids. Comptes Rendus. Mathématique, Volume 353 (2015) no. 9, pp. 859-863. doi : 10.1016/j.crma.2015.06.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.06.017/
[1] Integrability of Jacobi and Poisson structures, Ann. Inst. Fourier (Grenoble), Volume 57 (2007), pp. 1181-1216
[2] Sur l'intégration des algèbres de Lie locales et la préquantification, Bull. Sci. Math., Volume 121 (1997), pp. 423-462
[3] S.A. Djba, A. Wade, Bicrossed products induced by Poisson vector fields and their integrability, in preparation.
[4] Jacobi groupoids and generalized Lie bialgebroids, J. Geom. Phys., Volume 48 (2003), pp. 385-425
[5] Sur les automorphismes infinitésimaux des structures symplectiques et des structures de contact, Bruxelles, 1958, Centre Belge Rech. Math., Louvain (1959), pp. 37-59
[6] Variétés canoniques et transformations canoniques, C. R. Acad. Sci. Paris, Sér. A, Volume 280 (1975), pp. 37-40
[7] Poisson homogeneous spaces and Lie algebroids associated to Poisson actions, Duke Math. J., Volume 86 (1997), pp. 261-304
[8] Lie Groupoids and Lie Algebroids in Differential Geometry, Lond. Math. Soc. Lect. Note Ser., vol. 124, Cambridge University Press, Cambridge, UK, 1987
[9] Integration of Lie bialgebroids, Topology, Volume 39 (2000) no. 3, pp. 445-467
Cited by Sources:
Comments - Policy