Comptes Rendus
Mathematical analysis/Partial differential equations
Electromagnetic scattering by periodic structures with sign-changing coefficients
[Diffraction électromagnétique par un réseau périodique avec des coefficients qui changent de signe]
Comptes Rendus. Mathématique, Volume 353 (2015) no. 10, pp. 893-898.

Nous analysons le caractère bien posé du problème de diffraction d'ondes électromagnétiques par des structures périodiques dont les coefficients diélectriques changent de signe. Le problème de diffraction pour les équations de Maxwell avec des coefficients qui changent de signe a été récemment étudié par Bonnet-Ben Dhia et al. en utilisant le concept de la T-coercivité. Dans cette note, nous étendons cette étude à la diffraction par un réseau périodique en se basant sur une formulation intégrale volumique du problème. Le problème de diffraction est d'abord écrit sous la forme d'une équation de type Lippmann–Schwinger avec un noyau hyper-singulier. Nous montrons ensuite que la solution de cette équation satisfait une estimation a priori de type Gårding, ce qui nous permet de conclure sur le caractère bien posé du problème au sens de Fredholm.

We analyze the well-posedness of a scattering problem of time-harmonic electromagnetic waves by periodic structures with sign-changing coefficients. Transmission problems for Maxwell's equations with sign-changing coefficients in bounded domains have been recently studied by Bonnet-Ben Dhia and co-workers in the so-called T-coercivity framework. In this article, we generalize such a framework for periodic scattering problems relying on an integral equation approach. The periodic scattering problem is formulated by a hypersingular integral equation of Lipmann–Schwinger type. We prove that the integral equation satisfies a Gårding-type estimate, which allows us to establish the well-posedness of the problem in the sense of Fredholm.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.07.004

Dinh-Liem Nguyen 1 ; Thi-Phong Nguyen 2

1 Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109, USA
2 DEFI, INRIA Saclay Île-de-France, École polytechnique, route de Saclay, 91128 Palaiseau cedex, France
@article{CRMATH_2015__353_10_893_0,
     author = {Dinh-Liem Nguyen and Thi-Phong Nguyen},
     title = {Electromagnetic scattering by periodic structures with sign-changing coefficients},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {893--898},
     publisher = {Elsevier},
     volume = {353},
     number = {10},
     year = {2015},
     doi = {10.1016/j.crma.2015.07.004},
     language = {en},
}
TY  - JOUR
AU  - Dinh-Liem Nguyen
AU  - Thi-Phong Nguyen
TI  - Electromagnetic scattering by periodic structures with sign-changing coefficients
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 893
EP  - 898
VL  - 353
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2015.07.004
LA  - en
ID  - CRMATH_2015__353_10_893_0
ER  - 
%0 Journal Article
%A Dinh-Liem Nguyen
%A Thi-Phong Nguyen
%T Electromagnetic scattering by periodic structures with sign-changing coefficients
%J Comptes Rendus. Mathématique
%D 2015
%P 893-898
%V 353
%N 10
%I Elsevier
%R 10.1016/j.crma.2015.07.004
%G en
%F CRMATH_2015__353_10_893_0
Dinh-Liem Nguyen; Thi-Phong Nguyen. Electromagnetic scattering by periodic structures with sign-changing coefficients. Comptes Rendus. Mathématique, Volume 353 (2015) no. 10, pp. 893-898. doi : 10.1016/j.crma.2015.07.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.07.004/

[1] A. Alù First-principles homogenization theory for periodic metamaterials, Phys. Rev. B, Volume 84 (2011), p. 075135

[2] C. Amrouche; C. Bernardi; M. Dauge; V. Girault Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., Volume 21 (1998), pp. 823-864

[3] T. Arens Scattering by biperiodic layered media: the integral equation approach, Universität Karlsruhe, Karlsruhe, Germany, 2010 (Habilitation thesis)

[4] A.-S. Bonnet-Ben Dhia; L. Chesnel; P. Ciarlet T-coercivity for the Maxwell problem with sign-changing coefficients, Commun. Partial Differ. Equ., Volume 39 (2014), pp. 1007-1031

[5] A. Kirsch An integral equation approach and the interior transmission problem for Maxwell's equations, Inverse Probl. Imaging, Volume 1 (2007), pp. 159-180

[6] A. Lechleiter; D.-L. Nguyen Volume integral equations for scattering from anisotropic diffraction gratings, Math. Methods Appl. Sci., Volume 36 (2013), pp. 262-274

[7] P. Monk Finite Element Methods for Maxwell's Equations, Clarendon Press, Oxford, UK, 2003

[8] D.-L. Nguyen Spectral methods for direct and inverse scattering from periodic structures, École Polytechnique, Palaiseau, France, 2012 (Ph.D. thesis)

[9] J. Pendry Photonics: metamaterials in the sunshine, Nat. Mater., Volume 5 (2006), pp. 599-600

[10] Electromagnetic Theory of Gratings (R. Petit, ed.), Springer, 1980

Cité par Sources :

Commentaires - Politique