[
Classically, the well-posedness of variational formulations of mixed linear problems is achieved through the inf-sup condition on the constraint. In this note, we propose an alternative framework to study such problems by using the
Classiquement, le caractère bien posé des formulations variationnelles de problèmes linéaires mixtes est obtenu à l’aide de la condition inf-sup sur la contrainte. Dans cette note, nous proposons un cadre alternatif pour étudier de tels problèmes en utilisant la notion de
Révisé le :
Accepté le :
Publié le :
Mathieu Barré 1, 2 ; Patrick Ciarlet 3

@article{CRMATH_2024__362_G10_1051_0, author = {Mathieu Barr\'e and Patrick Ciarlet}, title = {The $\mathtt{T}$-coercivity approach for mixed problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {1051--1088}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.590}, language = {en}, }
Mathieu Barré; Patrick Ciarlet. The $\mathtt{T}$-coercivity approach for mixed problems. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1051-1088. doi : 10.5802/crmath.590. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.590/
[1] Mathematical foundations of computational electromagnetism, Applied Mathematical Sciences, 198, Springer, 2018 | DOI | MR | Zbl
[2] The finite element method with Lagrangian multipliers, Numer. Math., Volume 20 (1973) no. 3, pp. 179-192 | DOI | MR | Zbl
[3] Radiation condition for a non-smooth interface between a dielectric and a metamaterial, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 09, pp. 1629-1662 | DOI | MR | Zbl
[4]
[5]
[6] Two-dimensional Maxwell’s equations with sign-changing coefficients, Appl. Numer. Math., Volume 79 (2014), pp. 29-41 | DOI | MR | Zbl
[7] Mesh requirements for the finite element approximation of problems with sign-changing coefficients, Numer. Math., Volume 138 (2018), pp. 801–-838 | DOI | MR | Zbl
[8] Time harmonic wave diffraction problems in materials with sign-shifting coefficients, J. Comput. Appl. Math., Volume 234 (2010) no. 6, pp. 1912-1919 | DOI | MR | Zbl
[9] Mixed finite element methods and applications, Springer Series in Computational Mathematics, 44, Springer, 2013 | DOI | MR | Zbl
[10] The electric field integral equation on Lipschitz screens: definitions and numerical approximation, Numer. Math., Volume 94 (2003) no. 2, pp. 229-267 | DOI | MR | Zbl
[11] A dual finite element complex on the barycentric refinement, C. R. Math., Volume 340 (2005) no. 6, pp. 461-464 | DOI | Numdam | Zbl
[12] Homogenization of Maxwell’s equations and related scalar problems with sign-changing coefficients, Ann. Fac. Sci. Toulouse, Math., Volume 30 (2022) no. 5, pp. 1075-1119 | DOI | MR | Zbl
[13] Boundary element methods for Maxwell’s equations on non-smooth domains, Numer. Math., Volume 92 (2002) no. 4, pp. 679-710 | DOI | MR | Zbl
[14] Analysis of a linearized poromechanics model for incompressible and nearly incompressible materials, Evol. Equ. Control Theory, Volume 12 (2023) no. 3, pp. 846-906 | DOI | MR | Zbl
[15] Numerical analysis of an incompressible soft material poromechanics model using T-coercivity, C. R. Mécanique, Volume 351 (2023) no. S1, pp. 17-52 | DOI
[16] Homogenization of materials with sign changing coefficients, Commun. Math. Sci., Volume 14 (2016) no. 4, pp. 1137-1154 | DOI | Zbl
[17] On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Franc. Automat. Inform. Rech. Operat., R (1974) no. 2, pp. 129-151 | Numdam | MR | Zbl
[18] T-coercivity for the asymptotic analysis of scalar problems with sign-changing coefficients in thin periodic domains, Electron. J. Differ. Equ., Volume 2021 (2021), 59 | MR | Zbl
[19] Homogenization of a transmission problem with sign-changing coefficients and interfacial flux jump, Commun. Math. Sci., Volume 21 (2023) no. 7, pp. 2029-2049 | DOI | MR | Zbl
[20] Remarks on the discretization of some noncoercive operator with applications to heterogeneous Maxwell equations, SIAM J. Numer. Anal., Volume 43 (2005), pp. 1-18 | DOI | MR | Zbl
[21] Eigenvalue problems with sign-changing coefficients, C. R. Math., Volume 355 (2017) no. 6, pp. 671-675 | DOI | Zbl
[22] T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients, Numer. Math., Volume 124 (2013) no. 1, pp. 1-29 | DOI | MR | Zbl
[23] Bilaplacian problems with a sign-changing coefficient, Math. Methods Appl. Sci., Volume 39 (2016) no. 17, pp. 4964-4979 | DOI | MR | Zbl
[24]
[25] Mathematical and numerical analyses for the div-curl and div-curlcurl problems with a sign-changing coefficient (2020) (Technical Report HAL, https://hal.inria.fr/hal-02567484v1)
[26] Lecture notes on Maxwell’s equations and their approximation (in French), Ph. D. Thesis, Paris-Saclay University and Institut Polytechnique de Paris, Paris, France (2021) (Master’s degree Analysis, Modelling and Simulation, https://hal.inria.fr/hal-03153780)
[27] On the approximation of electromagnetic fields by edge finite elements – Part 4: analysis of the model with one sign-changing coefficient, Numer. Math., Volume 152 (2022), pp. 223-257 | DOI | MR | Zbl
[28] Domain Decomposition Methods for the diffusion equation with low-regularity solution, Comput. Math. Appl., Volume 74 (2017), pp. 2369-2384 | DOI | MR | Zbl
[29] Les inéquations en mécanique et en physique, Travaux et recherches mathematiques, 21, Dunod, 1972 | MR | Zbl
[30] Finite Elements II: Galerkin approximation, elliptic and mixed PDEs, Texts in Applied Mathematics, 73, Springer, 2021 | DOI | MR | Zbl
[31] Finite Elements III. First-order and time-dependent PDEs, Texts in Applied Mathematics, 74, Springer, 2021 | DOI | MR | Zbl
[32] An analysis of the convergence of mixed finite element methods, RAIRO, Anal. Numér., Volume 11 (1977) no. 4, pp. 341-354 | DOI | Numdam | Zbl
[33] Numerical analysis of a non-conforming Domain Decomposition for the multigroup SPN equations, Ph. D. Thesis, Paris-Saclay University, Paris, France (2018) (https://pastel.archives-ouvertes.fr/tel-01936967)
[34] Finite element methods for Navier–Stokes equations: theory and algorithms, Springer Series in Computational Mathematics, 5, Springer, 1986 | DOI | MR | Zbl
[35] Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility, Numer. Math., Volume 148 (2021) no. 2, pp. 387-407 | DOI | MR | Zbl
[36] On the approximation of dispersive electromagnetic eigenvalue problems in two dimensions, IMA J. Numer. Anal., Volume 43 (2023) no. 1, pp. 535-559 | DOI | MR | Zbl
[37] Finite elements in computational electromagnetics, Acta Numer. (2002), pp. 237-339 | DOI | MR | Zbl
[38] A new practical framework for the stability analysis of perturbed saddle-point problems and applications, Math. Comput., Volume 92 (2023), pp. 607-634 | DOI | MR | Zbl
[39] Convergence of infinite element methods for scalar waveguide problems, BIT, Volume 55 (2015), pp. 215-254 | DOI | MR | Zbl
[40] Improved stability estimates for solving Stokes problem with Fortin-Soulie finite elements (2023) (Technical Report HAL,no. cea-03833616, https://hal-cea.archives-ouvertes.fr/cea-03833616v2)
[41] Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation, J. Comput. Phys., Volume 241 (2013), pp. 445-463 | DOI | MR | Zbl
[42] The mathematical theory of viscous incompressible flow, 2, Gordon and Breach New York, 1969 | MR | Zbl
[43] Analyse numérique de la formulation intégrodifférentielle d’un problème de Maxwell harmonique impliquant un diélectrique traversé de surfaces exfoliées métalliques et impédantes (2022) (Technical Report HAL, https://hal.archives-ouvertes.fr/hal-03644547)
[44] A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients, J. Comput. Appl. Math., Volume 235 (2011), pp. 4272-4282 | DOI | Zbl
[45] Variational techniques for elliptic partial differential equations, CRC Press, 2019 | DOI | MR | Zbl
[46] Convergence analysis of a Galerkin boundary element method for electromagnetic resonance problems, SN Partial Differ. Equ. Appl., Volume 2 (2021), 39 | DOI | MR | Zbl
[47] A local compactness theorem for Maxwell’s equations, Math. Methods Appl. Sci., Volume 2 (1980) no. 1, pp. 12-25 | DOI | Zbl
Cité par Sources :
Commentaires - Politique