[-coercivité et problèmes mixtes]
Classiquement, le caractère bien posé des formulations variationnelles de problèmes linéaires mixtes est obtenu à l’aide de la condition inf-sup sur la contrainte. Dans cette note, nous proposons un cadre alternatif pour étudier de tels problèmes en utilisant la notion de -coercivité pour obtenir une condition inf-sup globale. Il s’agit d’une approche constructive qui permet en outre de concevoir simplement des approximations numériques adaptées car la dérivation de la condition inf-sup discrète uniforme découle en général directement de l’étude du problème continu. Pour appuyer notre propos, nous résolvons une série de problèmes mixtes classiques grâce à la notion de -coercivité. Entre autres, le lemme de Fortin apparaît naturellement dans l’analyse numérique des problèmes discrets.
Classically, the well-posedness of variational formulations of mixed linear problems is achieved through the inf-sup condition on the constraint. In this note, we propose an alternative framework to study such problems by using the -coercivity approach to derive a global inf-sup condition. Generally speaking, this is a constructive approach that, in addition, drives the design of suitable approximations. As a matter of fact, the derivation of the uniform discrete inf-sup condition for the approximate problems follows easily from the study of the original problem. To support our view, we solve a series of classical mixed problems with the -coercivity approach. Among others, the celebrated Fortin Lemma appears naturally in the numerical analysis of the approximate problems.
Révisé le :
Accepté le :
Publié le :
Mathieu Barré 1, 2 ; Patrick Ciarlet 3
@article{CRMATH_2024__362_G10_1051_0, author = {Mathieu Barr\'e and Patrick Ciarlet}, title = {The $\mathtt{T}$-coercivity approach for mixed problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {1051--1088}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.590}, language = {en}, }
Mathieu Barré; Patrick Ciarlet. The $\mathtt{T}$-coercivity approach for mixed problems. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1051-1088. doi : 10.5802/crmath.590. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.590/
[1] Mathematical foundations of computational electromagnetism, Applied Mathematical Sciences, 198, Springer, 2018 | DOI | Zbl
[2] The finite element method with Lagrangian multipliers, Numer. Math., Volume 20 (1973) no. 3, pp. 179-192 | DOI | Zbl
[3] Radiation condition for a non-smooth interface between a dielectric and a metamaterial, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 09, pp. 1629-1662 | DOI | Zbl
[4] -coercivity for scalar interface problems between dielectrics and metamaterials, ESAIM, Math. Model. Numer. Anal., Volume 46 (2012), pp. 1363-1387 | DOI | Zbl
[5] -coercivity for the Maxwell problem with sign-changing coefficients, Commun. Partial Differ. Equations, Volume 39 (2014), pp. 1007-1031 | DOI | Zbl
[6] Two-dimensional Maxwell’s equations with sign-changing coefficients, Appl. Numer. Math., Volume 79 (2014), pp. 29-41 | DOI | Zbl
[7] Mesh requirements for the finite element approximation of problems with sign-changing coefficients, Numer. Math., Volume 138 (2018), pp. 801–-838 | DOI | Zbl
[8] Time harmonic wave diffraction problems in materials with sign-shifting coefficients, J. Comput. Appl. Math., Volume 234 (2010) no. 6, pp. 1912-1919 | DOI | Zbl
[9] Mixed finite element methods and applications, Springer Series in Computational Mathematics, 44, Springer, 2013 | DOI | Zbl
[10] The electric field integral equation on Lipschitz screens: definitions and numerical approximation, Numer. Math., Volume 94 (2003) no. 2, pp. 229-267 | DOI | Zbl
[11] A dual finite element complex on the barycentric refinement, C. R. Math., Volume 340 (2005) no. 6, pp. 461-464 | DOI | Numdam | Zbl
[12] Homogenization of Maxwell’s equations and related scalar problems with sign-changing coefficients, Ann. Fac. Sci. Toulouse, Math., Volume 30 (2022) no. 5, pp. 1075-1119 | DOI | Zbl
[13] Boundary element methods for Maxwell’s equations on non-smooth domains, Numer. Math., Volume 92 (2002) no. 4, pp. 679-710 | DOI | Zbl
[14] Analysis of a linearized poromechanics model for incompressible and nearly incompressible materials, Evol. Equ. Control Theory, Volume 12 (2023) no. 3, pp. 846-906 | DOI | Zbl
[15] Numerical analysis of an incompressible soft material poromechanics model using T-coercivity, C. R. Mécanique, Volume 351 (2023) no. S1, pp. 17-52 | DOI
[16] Homogenization of materials with sign changing coefficients, Commun. Math. Sci., Volume 14 (2016) no. 4, pp. 1137-1154 | DOI | Zbl
[17] On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Franc. Automat. Inform. Rech. Operat., R (1974) no. 2, pp. 129-151 | Numdam | Zbl
[18] T-coercivity for the asymptotic analysis of scalar problems with sign-changing coefficients in thin periodic domains, Electron. J. Differ. Equ., Volume 2021 (2021), 59 | Zbl
[19] Homogenization of a transmission problem with sign-changing coefficients and interfacial flux jump, Commun. Math. Sci., Volume 21 (2023) no. 7, pp. 2029-2049 | DOI | Zbl
[20] Remarks on the discretization of some noncoercive operator with applications to heterogeneous Maxwell equations, SIAM J. Numer. Anal., Volume 43 (2005), pp. 1-18 | DOI | Zbl
[21] Eigenvalue problems with sign-changing coefficients, C. R. Math., Volume 355 (2017) no. 6, pp. 671-675 | DOI | Zbl
[22] T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients, Numer. Math., Volume 124 (2013) no. 1, pp. 1-29 | DOI | Zbl
[23] Bilaplacian problems with a sign-changing coefficient, Math. Methods Appl. Sci., Volume 39 (2016) no. 17, pp. 4964-4979 | DOI | Zbl
[24] -coercivity: Application to the discretization of Helmholtz-like problems, Comput. Math. Appl., Volume 64 (2012) no. 1, pp. 22-34 | DOI | Zbl
[25] Mathematical and numerical analyses for the div-curl and div-curlcurl problems with a sign-changing coefficient (2020) (Technical Report HAL, https://hal.inria.fr/hal-02567484v1)
[26] Lecture notes on Maxwell’s equations and their approximation (in French), Ph. D. Thesis, Paris-Saclay University and Institut Polytechnique de Paris, Paris, France (2021) (Master’s degree Analysis, Modelling and Simulation, https://hal.inria.fr/hal-03153780)
[27] On the approximation of electromagnetic fields by edge finite elements – Part 4: analysis of the model with one sign-changing coefficient, Numer. Math., Volume 152 (2022), pp. 223-257 | DOI | Zbl
[28] Domain Decomposition Methods for the diffusion equation with low-regularity solution, Comput. Math. Appl., Volume 74 (2017), pp. 2369-2384 | DOI | Zbl
[29] Les inéquations en mécanique et en physique, Travaux et recherches mathematiques, 21, Dunod, 1972 | Zbl
[30] Finite Elements II: Galerkin approximation, elliptic and mixed PDEs, Texts in Applied Mathematics, 73, Springer, 2021 | DOI | Zbl
[31] Finite Elements III. First-order and time-dependent PDEs, Texts in Applied Mathematics, 74, Springer, 2021 | DOI | Zbl
[32] An analysis of the convergence of mixed finite element methods, RAIRO, Anal. Numér., Volume 11 (1977) no. 4, pp. 341-354 | DOI | Numdam | Zbl
[33] Numerical analysis of a non-conforming Domain Decomposition for the multigroup SPN equations, Ph. D. Thesis, Paris-Saclay University, Paris, France (2018) (https://pastel.archives-ouvertes.fr/tel-01936967)
[34] Finite element methods for Navier–Stokes equations: theory and algorithms, Springer Series in Computational Mathematics, 5, Springer, 1986 | DOI | Zbl
[35] Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility, Numer. Math., Volume 148 (2021) no. 2, pp. 387-407 | DOI | Zbl
[36] On the approximation of dispersive electromagnetic eigenvalue problems in two dimensions, IMA J. Numer. Anal., Volume 43 (2023) no. 1, pp. 535-559 | DOI | Zbl
[37] Finite elements in computational electromagnetics, Acta Numer. (2002), pp. 237-339 | DOI | Zbl
[38] A new practical framework for the stability analysis of perturbed saddle-point problems and applications, Math. Comput., Volume 92 (2023), pp. 607-634 | DOI | Zbl
[39] Convergence of infinite element methods for scalar waveguide problems, BIT, Volume 55 (2015), pp. 215-254 | DOI | Zbl
[40] Improved stability estimates for solving Stokes problem with Fortin-Soulie finite elements (2023) (Technical Report HAL,no. cea-03833616, https://hal-cea.archives-ouvertes.fr/cea-03833616v2)
[41] Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation, J. Comput. Phys., Volume 241 (2013), pp. 445-463 | DOI | Zbl
[42] The mathematical theory of viscous incompressible flow, 2, Gordon and Breach New York, 1969 | Zbl
[43] Analyse numérique de la formulation intégrodifférentielle d’un problème de Maxwell harmonique impliquant un diélectrique traversé de surfaces exfoliées métalliques et impédantes (2022) (Technical Report HAL, https://hal.archives-ouvertes.fr/hal-03644547)
[44] A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients, J. Comput. Appl. Math., Volume 235 (2011), pp. 4272-4282 | DOI | Zbl
[45] Variational techniques for elliptic partial differential equations, CRC Press, 2019 | DOI | Zbl
[46] Convergence analysis of a Galerkin boundary element method for electromagnetic resonance problems, SN Partial Differ. Equ. Appl., Volume 2 (2021), 39 | DOI | Zbl
[47] A local compactness theorem for Maxwell’s equations, Math. Methods Appl. Sci., Volume 2 (1980) no. 1, pp. 12-25 | DOI | Zbl
Cité par Sources :
Commentaires - Politique