[Existence globale et bornes pour les solutions classiques d'un système quasi linéaire, parabolique–elliptique, de chimiotaxie avec source logistique]
Nous considérons le système quasi linéaire, parabolique–elliptique, de chimiotaxie
Nous démontrons que les solutions classiques du système ci-dessus sont uniformément bornées en temps, sans restriction sur m et b. Ceci étend un résultat récent de Wang et al. (2014) [16], qui borne les solutions pour sous la condition , où si et si .
We consider the quasilinear parabolic–elliptic chemotaxis system
We prove that the classical solutions to the above system are uniformly in-time-bounded without any restrictions on m and b. This result extends one of the recent results by Wang et al. (2014) [16], which assert the boundedness of solutions for under the condition with for and for .
Accepté le :
Publié le :
Ali Khelghati 1 ; Khadijeh Baghaei 1
@article{CRMATH_2015__353_10_913_0, author = {Ali Khelghati and Khadijeh Baghaei}, title = {Global existence and boundedness of classical solutions in a quasilinear parabolic{\textendash}elliptic chemotaxis system with logistic source}, journal = {Comptes Rendus. Math\'ematique}, pages = {913--917}, publisher = {Elsevier}, volume = {353}, number = {10}, year = {2015}, doi = {10.1016/j.crma.2015.08.006}, language = {en}, }
TY - JOUR AU - Ali Khelghati AU - Khadijeh Baghaei TI - Global existence and boundedness of classical solutions in a quasilinear parabolic–elliptic chemotaxis system with logistic source JO - Comptes Rendus. Mathématique PY - 2015 SP - 913 EP - 917 VL - 353 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2015.08.006 LA - en ID - CRMATH_2015__353_10_913_0 ER -
%0 Journal Article %A Ali Khelghati %A Khadijeh Baghaei %T Global existence and boundedness of classical solutions in a quasilinear parabolic–elliptic chemotaxis system with logistic source %J Comptes Rendus. Mathématique %D 2015 %P 913-917 %V 353 %N 10 %I Elsevier %R 10.1016/j.crma.2015.08.006 %G en %F CRMATH_2015__353_10_913_0
Ali Khelghati; Khadijeh Baghaei. Global existence and boundedness of classical solutions in a quasilinear parabolic–elliptic chemotaxis system with logistic source. Comptes Rendus. Mathématique, Volume 353 (2015) no. 10, pp. 913-917. doi : 10.1016/j.crma.2015.08.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.08.006/
[1] bounds of solutions of reaction–diffusion equations, Commun. Partial Differ. Equ., Volume 4 (1979), pp. 827-868
[2] Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with logistic source, J. Math. Anal. Appl., Volume 412 (2014), pp. 181-188
[3] Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source, Math. Methods Appl. Sci., Volume 37 (2014), pp. 2326-2330
[4] A user's guide to PDE models for chemotaxis, J. Math. Biol., Volume 58 (2009), pp. 183-217
[5] Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., Volume 12 (2001), pp. 159-177
[6] Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., Volume 215 (2005), pp. 52-107
[7] Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970), pp. 399-415
[8] Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equ., Volume 258 (2015), pp. 1158-1191
[9] Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst., Ser. B, Volume 20 (2015), pp. 1499-1527
[10] Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Volume 40 (1997), pp. 411-433
[11] Finite dimensional attractors for one-dimensional Keller–Segel equations, Funkc. Ekvacioj, Volume 44 (2001), pp. 441-469
[12] Global existence of a chemotaxis-growth system in , Adv. Math. Sci. Appl., Volume 12 (2002), pp. 587-606
[13] Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity, J. Differ. Equ., Volume 252 (2012), pp. 692-715
[14] A chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 849-877
[15] Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., vol. 68, Springer-Verlag, New York, 1997
[16] On a quasilinear parabolic–elliptic chemotaxis system with logistic source, J. Differ. Equ., Volume 256 (2014), pp. 1847-1872
[17] Chemotaxis with logistic source: very weak global solutions and their boundedness properties, J. Math. Anal. Appl., Volume 348 (2008), pp. 708-729
[18] Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., Volume 248 (2010), pp. 2889-2905
[19] Does ‘volume-filling effect’ always prevent chemotactic collapse?, Math. Methods Appl. Sci., Volume 33 (2010), pp. 12-24
[20] Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 35 (2010), pp. 1516-1537
[21] Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., Volume 384 (2011), pp. 261-272
[22] Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl., Volume 100 (2013), pp. 748-767
[23] Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differ. Equ., Volume 257 (2014), pp. 1056-1077
[24] How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., Volume 24 (2014), pp. 809-855
[25] Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal. TMA, Volume 72 (2010), pp. 1044-1064
[26] Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source, Discrete Contin. Dyn. Syst., Volume 35 (2015), pp. 2299-2323
Cité par Sources :
Commentaires - Politique