In this paper, we study a 4-sublinear Schrödinger–Poisson system with sign-changing potential. Under some suitable assumptions, the existence of two nontrivial solutions are obtained by using the Morse theory. Our result improves the recent ones of Chen and Zhang (2014) [6].
Accepted:
Published online:
Hongliang Liu 1; Haibo Chen 1; Gangwei Wang 2, 3
@article{CRMATH_2016__354_1_75_0, author = {Hongliang Liu and Haibo Chen and Gangwei Wang}, title = {Multiplicity for a 4-sublinear {Schr\"odinger{\textendash}Poisson} system with sign-changing potential via {Morse} theory}, journal = {Comptes Rendus. Math\'ematique}, pages = {75--80}, publisher = {Elsevier}, volume = {354}, number = {1}, year = {2016}, doi = {10.1016/j.crma.2015.10.018}, language = {en}, }
TY - JOUR AU - Hongliang Liu AU - Haibo Chen AU - Gangwei Wang TI - Multiplicity for a 4-sublinear Schrödinger–Poisson system with sign-changing potential via Morse theory JO - Comptes Rendus. Mathématique PY - 2016 SP - 75 EP - 80 VL - 354 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2015.10.018 LA - en ID - CRMATH_2016__354_1_75_0 ER -
%0 Journal Article %A Hongliang Liu %A Haibo Chen %A Gangwei Wang %T Multiplicity for a 4-sublinear Schrödinger–Poisson system with sign-changing potential via Morse theory %J Comptes Rendus. Mathématique %D 2016 %P 75-80 %V 354 %N 1 %I Elsevier %R 10.1016/j.crma.2015.10.018 %G en %F CRMATH_2016__354_1_75_0
Hongliang Liu; Haibo Chen; Gangwei Wang. Multiplicity for a 4-sublinear Schrödinger–Poisson system with sign-changing potential via Morse theory. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 75-80. doi : 10.1016/j.crma.2015.10.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.018/
[1] On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial Differ. Equ., Volume 1 (1993), pp. 439-475
[2] Positive solutions for some non-autonomous Schrödinger–Poisson systems, J. Differ. Equ., Volume 248 (2010), pp. 521-543
[3] Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, Basel, Berlin, 1993
[4] Multiple positive solutions of a class of non autonomous Schrödinger–Poisson systems, Nonlinear Anal., Real World Appl., Volume 21 (2015), pp. 13-26
[5] Infinitely many solutions for Schrödinger–Maxwell equations with indefinite sign subquadratic potentials, Appl. Math. Comput., Volume 226 (2014), pp. 492-502
[6] Existence of nontrivial solution for a 4-sublinear Schrödinger–Poisson system, Appl. Math. Lett., Volume 38 (2014), pp. 135-139
[7] Semiclassical solutions for the nonlinear Schrödinger–Maxwell equations, J. Math. Anal. Appl., Volume 415 (2014), pp. 791-802
[8] The existence of infinitely many solutions for the nonlinear Schrödinger–Maxwell equations, Results Math., Volume 65 (2014), pp. 223-234
[9] Two positive solutions of a class of Schrödinger–Poisson system with indefinite nonlinearity, J. Differ. Equ., Volume 255 (2013), pp. 2463-2483
[10] Schrödinger–Poisson system with steep potential well, J. Differ. Equ., Volume 251 (2011), pp. 582-608
[11] Schrödinger–Poisson system with singular potential, J. Math. Anal. Appl., Volume 417 (2014), pp. 411-438
[12] Multiple solutions for superlinear Schrödinger–Poisson system with sign-changing potential and nonlinearity, Comput. Math. Appl., Volume 68 (2014), pp. 1982-1990
[13] Existence of ground state solutions for the Schrödinger–Poisson systems, Appl. Math. Comput., Volume 244 (2014), pp. 312-323
[14] Critical Point Theory and Hamiltonian Systems, Springer, Berlin, 1989
[15] Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New York, London, 1978
[16] The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., Volume 237 (2006), pp. 655-674
[17] Positive solutions of asymptotically linear Schrödinger–Poisson systems with a radial potential vanishing at infinity, Nonlinear Anal., Volume 74 (2011), pp. 413-423
[18] On ground state solutions for some non autonomous Schrödinger–Poisson systems, J. Differ. Equ., Volume 252 (2012), pp. 3365-3380
[19] Multiplicity of small negative-energy solutions for a class of nonlinear Schrödinger–Poisson systems, Appl. Math. Comput., Volume 243 (2014), pp. 817-824
[20] Existence of infinitely many solutions for generalized Schrödinger–Poisson system, Bound. Value Probl., Volume 2014 (2014)
[21] Existence and multiplicity results of the nonlinear Schrödinger–Poisson systems, Nonlinear Anal., Real World Appl., Volume 13 (2012), pp. 1093-1101
Cited by Sources:
☆ Research supported by Hunan Provincial Foundation For Postgraduate CX2014B044, National Natural Science Foundation of China 11271372 and Hunan Provincial Natural Science Foundation of China 12JJ2004.
Comments - Policy