In this note, we propose a surprising and important generalization of the quantum Bohm potential identity. This formula allows us to design an original conservative extended formulation of Euler–Korteweg systems and the construction of a numerical scheme with entropy stability property under a hyperbolic CFL condition in the multi-dimensional setting. To the authors' knowledge, this generalization of the quantum Bohm identity strongly improves what is already known for simulation of such a dispersive system and is also important for theoretical studies on compressible Navier–Stokes equations with degenerate viscosities.
Dans cette note, on propose une importante généralisation de l'identité dite du potentiel de Bohm quantique. Cette dernière permet de définir une formulation augmentée des systèmes d'Euler–Korteweg, qui est sous forme conservative dans le cas multi-dimensionnel. Une conséquence très importante de cette formulation est la construction de schémas avec stabilité entropique sous condition CFL hyperbolique du système d'Euler–Korteweg. Cette généralisation de l'identité de Bohm évite donc le développement d'ondes parasites pour ces systèmes de type dispersif et est aussi importante, par exemple, dans l'étude des équations de Navier–Stokes compressibles à viscosités dégénérées.
Accepted:
Published online:
Didier Bresch 1; Frédéric Couderc 2; Pascal Noble 2; Jean-Paul Vila 2
@article{CRMATH_2016__354_1_39_0, author = {Didier Bresch and Fr\'ed\'eric Couderc and Pascal Noble and Jean-Paul Vila}, title = {A generalization of the quantum {Bohm} identity: {Hyperbolic} {CFL} condition for {Euler{\textendash}Korteweg} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {39--43}, publisher = {Elsevier}, volume = {354}, number = {1}, year = {2016}, doi = {10.1016/j.crma.2015.09.020}, language = {en}, }
TY - JOUR AU - Didier Bresch AU - Frédéric Couderc AU - Pascal Noble AU - Jean-Paul Vila TI - A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler–Korteweg equations JO - Comptes Rendus. Mathématique PY - 2016 SP - 39 EP - 43 VL - 354 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2015.09.020 LA - en ID - CRMATH_2016__354_1_39_0 ER -
%0 Journal Article %A Didier Bresch %A Frédéric Couderc %A Pascal Noble %A Jean-Paul Vila %T A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler–Korteweg equations %J Comptes Rendus. Mathématique %D 2016 %P 39-43 %V 354 %N 1 %I Elsevier %R 10.1016/j.crma.2015.09.020 %G en %F CRMATH_2016__354_1_39_0
Didier Bresch; Frédéric Couderc; Pascal Noble; Jean-Paul Vila. A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler–Korteweg equations. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 39-43. doi : 10.1016/j.crma.2015.09.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.09.020/
[1] On the well-posedness for the Euler–Korteweg model in several space dimensions, Indiana Univ. Math. J., Volume 56 (2007) no. 4, pp. 1499-1579
[2] Shallow water flows for arbitrary topography, Commun. Math. Sci., Volume 6 (2008) no. 1, pp. 73-90
[3] On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Partial Differ. Equ., Volume 28 (2003) no. 3–4, pp. 843-868
[4] D. Bresch, A. Vasseur, C. Yu, A remark on the existence for degenerate compressible Navier–Stokes equations, 2015, in preparation.
[5] D. Bresch, F. Couderc, P. Noble, J.-P. Vila, Stable schemes for some compressible capillary fluid systems under hyperbolic Courant–Friedrichs–Lewy condition, in preparation.
[6] Two-velocity hydrodynamics in fluid mechanics: part II. Existence of global κ-entropy solutions to compressible Navier–Stokes systems with degenerate viscosities, J. Math. Pures Appl. (2015) (in press)
[7] Dispersive and classical shock waves in Bose–Einstein condensates and gas dynamics, Phys. Rev. A, Volume 74 (2006) no. 2
[8] On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method, J. Comput. Phys., Volume 182 (2002), pp. 262-276
[9] Three-dimensional instabilities of film flows, Phys. Fluids, Volume 7 (1995) no. 1, pp. 55-67
[10] Stability theory for difference approximations of Euler–Korteweg equations and application to thin film flows, SIAM J. Numer. Anal., Volume 52 (2014) no. 6, pp. 2770-2791
[11] Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations, 2015 | arXiv
Cited by Sources:
Comments - Policy