Recently A. Vasseur and C. Yu have proved (see A. Vasseur, C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations, arXiv:1501.06803, 2015) the existence of global entropy-weak solutions to the compressible Navier–Stokes equations with viscosities and and a pressure law under the form with and constants. In this note, we propose a non-trivial relative entropy for such system in a periodic box and give some applications. This extends, in some sense, results with constant viscosities recently initiated by E. Feireisl, B.J. Jin and A. Novotny in [J. Math. Fluid Mech. (2012)]. We present some mathematical results related to the weak–strong uniqueness, the convergence to a dissipative solution to compressible or incompressible Euler equations. As a by-product, this mathematically justifies the convergence of solutions to a viscous shallow-water system to solutions to the inviscid shallow-water system.
Récemment, A. Vasseur et C. Yu ont prouvé (voir A. Vasseur, C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations, arXiv:1501.06803, 2015) l'existence globale de solutions faibles entropiques des équations de Navier–Stokes compressibles avec des viscosités , et une pression du type , avec et deux constantes. Dans cette note, on propose une entropie relative originale pour un tel système, avec cette dépendance des viscosités en la densité, et on donne quelques applications. Ceci étend les résultats avec viscosités constantes initiés par E. Feireisl, B.J. Jin and A. Novotny dans [J. Math. Fluid Mech. (2012)]. On présente quelques résultats liés à l'unicité faible–fort, la convergence vers une solution dissipative d'Euler compressible. Ceci justifie en particulier la convergence d'un système de Saint-venant avec viscosité vers son analogue non visqueux.
Accepted:
Published online:
Didier Bresch 1; Pascal Noble 2; Jean-Paul Vila 2
@article{CRMATH_2016__354_1_45_0, author = {Didier Bresch and Pascal Noble and Jean-Paul Vila}, title = {Relative entropy for compressible {Navier{\textendash}Stokes} equations with density-dependent viscosities and applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {45--49}, publisher = {Elsevier}, volume = {354}, number = {1}, year = {2016}, doi = {10.1016/j.crma.2015.10.003}, language = {en}, }
TY - JOUR AU - Didier Bresch AU - Pascal Noble AU - Jean-Paul Vila TI - Relative entropy for compressible Navier–Stokes equations with density-dependent viscosities and applications JO - Comptes Rendus. Mathématique PY - 2016 SP - 45 EP - 49 VL - 354 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2015.10.003 LA - en ID - CRMATH_2016__354_1_45_0 ER -
%0 Journal Article %A Didier Bresch %A Pascal Noble %A Jean-Paul Vila %T Relative entropy for compressible Navier–Stokes equations with density-dependent viscosities and applications %J Comptes Rendus. Mathématique %D 2016 %P 45-49 %V 354 %N 1 %I Elsevier %R 10.1016/j.crma.2015.10.003 %G en %F CRMATH_2016__354_1_45_0
Didier Bresch; Pascal Noble; Jean-Paul Vila. Relative entropy for compressible Navier–Stokes equations with density-dependent viscosities and applications. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 45-49. doi : 10.1016/j.crma.2015.10.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.003/
[1] Remarks on the inviscid limit for the compressible flows, 2014 | arXiv
[2] Quelques modèles diffusifs capillaires de type Korteweg, C. R., Méc., Volume 332 (2004) no. 11, pp. 881-886
[3] Two-velocity hydrodynamics in fluid mechanics, part I: well posedness for zero Mach number systems, J. Math. Pures Appl., Volume 104 (2015) no. 4, pp. 762-800
[4] D. Bresch, P. Noble, J.-P. Vila, Relative entropy for compressible Navier–Stokes with density dependent viscosities and various applications, 2015, in preparation.
[5] D. Bresch, P. Noble, J.-P. Vila, P. Villedieu, Numerical schemes for some extended formulations of compressible Navier–Stokes equations, 2015, in preparation.
[6] Relative entropies, dissipative solutions, and singular limits of complete fluid systems (Fabio Ancona; Alberto Bressan; Pierangelo Marcati; Andrea Marson, eds.), Hyperbolic Problems: Theory, Numerics, Applications, AIMS on Applied Mathematics, vol. 8, AIMS, Springfield, MO, USA, 2014, pp. 11-28
[7] Relative entropies, suitable weak solutions and weak–strong uniqueness for the compressible Navier–Stokes system, J. Math. Fluid Mech., Volume 14 (2012) no. 4, pp. 717-730
[8] Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser Verlag, 2009
[9] T. Gallouët, R. Herbin, D. Maltese, A. Novotny, Error estimates for a numerical approximation to the compressible barotropic Navier–Stokes equations, hal-01108579, 2015.
[10] Weak–strong uniqueness for compressible Navier–Stokes system with degenerate viscosity coefficient and vacuum in one dimension, 2014 | arXiv
[11] Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models, Oxford Science Publication, 2006
[12] A. Novotny, Lecture Notes on Navier–Stokes–Fourier System, Panorama et synthèses, SMF, 2015, in press.
[13] On the inviscid limit for the compressible Navier–Stokes system in an impermeable bounded domain, J. Math. Fluid Mech., Volume 16 (2014) no. 1, pp. 163-178
[14] Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations, 2015 | arXiv
Cited by Sources:
Comments - Policy