[Entropie relative pour les équations de Navier–Stokes compressibles avec viscosités dépendant de la densité]
Recently A. Vasseur and C. Yu have proved (see A. Vasseur, C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations, arXiv:1501.06803, 2015) the existence of global entropy-weak solutions to the compressible Navier–Stokes equations with viscosities
Récemment, A. Vasseur et C. Yu ont prouvé (voir A. Vasseur, C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations, arXiv:1501.06803, 2015) l'existence globale de solutions faibles entropiques des équations de Navier–Stokes compressibles avec des viscosités
Accepté le :
Publié le :
Didier Bresch 1 ; Pascal Noble 2 ; Jean-Paul Vila 2
@article{CRMATH_2016__354_1_45_0, author = {Didier Bresch and Pascal Noble and Jean-Paul Vila}, title = {Relative entropy for compressible {Navier{\textendash}Stokes} equations with density-dependent viscosities and applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {45--49}, publisher = {Elsevier}, volume = {354}, number = {1}, year = {2016}, doi = {10.1016/j.crma.2015.10.003}, language = {en}, }
TY - JOUR AU - Didier Bresch AU - Pascal Noble AU - Jean-Paul Vila TI - Relative entropy for compressible Navier–Stokes equations with density-dependent viscosities and applications JO - Comptes Rendus. Mathématique PY - 2016 SP - 45 EP - 49 VL - 354 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2015.10.003 LA - en ID - CRMATH_2016__354_1_45_0 ER -
%0 Journal Article %A Didier Bresch %A Pascal Noble %A Jean-Paul Vila %T Relative entropy for compressible Navier–Stokes equations with density-dependent viscosities and applications %J Comptes Rendus. Mathématique %D 2016 %P 45-49 %V 354 %N 1 %I Elsevier %R 10.1016/j.crma.2015.10.003 %G en %F CRMATH_2016__354_1_45_0
Didier Bresch; Pascal Noble; Jean-Paul Vila. Relative entropy for compressible Navier–Stokes equations with density-dependent viscosities and applications. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 45-49. doi : 10.1016/j.crma.2015.10.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.003/
[1] Remarks on the inviscid limit for the compressible flows, 2014 | arXiv
[2] Quelques modèles diffusifs capillaires de type Korteweg, C. R., Méc., Volume 332 (2004) no. 11, pp. 881-886
[3] Two-velocity hydrodynamics in fluid mechanics, part I: well posedness for zero Mach number systems, J. Math. Pures Appl., Volume 104 (2015) no. 4, pp. 762-800
[4] D. Bresch, P. Noble, J.-P. Vila, Relative entropy for compressible Navier–Stokes with density dependent viscosities and various applications, 2015, in preparation.
[5] D. Bresch, P. Noble, J.-P. Vila, P. Villedieu, Numerical schemes for some extended formulations of compressible Navier–Stokes equations, 2015, in preparation.
[6] Relative entropies, dissipative solutions, and singular limits of complete fluid systems (Fabio Ancona; Alberto Bressan; Pierangelo Marcati; Andrea Marson, eds.), Hyperbolic Problems: Theory, Numerics, Applications, AIMS on Applied Mathematics, vol. 8, AIMS, Springfield, MO, USA, 2014, pp. 11-28
[7] Relative entropies, suitable weak solutions and weak–strong uniqueness for the compressible Navier–Stokes system, J. Math. Fluid Mech., Volume 14 (2012) no. 4, pp. 717-730
[8] Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser Verlag, 2009
[9] T. Gallouët, R. Herbin, D. Maltese, A. Novotny, Error estimates for a numerical approximation to the compressible barotropic Navier–Stokes equations, hal-01108579, 2015.
[10] Weak–strong uniqueness for compressible Navier–Stokes system with degenerate viscosity coefficient and vacuum in one dimension, 2014 | arXiv
[11] Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models, Oxford Science Publication, 2006
[12] A. Novotny, Lecture Notes on Navier–Stokes–Fourier System, Panorama et synthèses, SMF, 2015, in press.
[13] On the inviscid limit for the compressible Navier–Stokes system in an impermeable bounded domain, J. Math. Fluid Mech., Volume 16 (2014) no. 1, pp. 163-178
[14] Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations, 2015 | arXiv
Cité par Sources :
Commentaires - Politique