Comptes Rendus
Partial differential equations
Applications of Bourgain–Brézis inequalities to fluid mechanics and magnetism
Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 51-55.

As a consequence of inequalities due to Bourgain–Brézis, we obtain local-in-time well-posedness for the two-dimensional Navier–Stokes equation with velocity bounded in spacetime and initial vorticity in bounded variation. We also obtain spacetime estimates for the magnetic field vector through improved Strichartz inequalities.

À partir d'inégalités de Bourgain–Brézis, nous démontrons le caractère bien posé localement dans le temps des équations de Navier–Stokes avec vitesse bornée en espace-temps et un tourbillon initial à variation bornée. Nous obtenons également des estimations en espace-temps pour le champ magnétique grâce à des inégalités de Strichartz améliorées.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.10.005

Sagun Chanillo 1; Jean Van Schaftingen 2; Po-Lam Yung 3

1 Department of Mathematics, State University of New Jersey, Rutgers, NJ 08854, USA
2 Institut de recherche en mathématique et en physique, Université catholique de Louvain, chemin du Cyclotron 2 bte L7.01.01, 1348 Louvain-la-Neuve, Belgium
3 Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong
@article{CRMATH_2016__354_1_51_0,
     author = {Sagun Chanillo and Jean Van Schaftingen and Po-Lam Yung},
     title = {Applications of {Bourgain{\textendash}Br\'ezis} inequalities to fluid mechanics and magnetism},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {51--55},
     publisher = {Elsevier},
     volume = {354},
     number = {1},
     year = {2016},
     doi = {10.1016/j.crma.2015.10.005},
     language = {en},
}
TY  - JOUR
AU  - Sagun Chanillo
AU  - Jean Van Schaftingen
AU  - Po-Lam Yung
TI  - Applications of Bourgain–Brézis inequalities to fluid mechanics and magnetism
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 51
EP  - 55
VL  - 354
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2015.10.005
LA  - en
ID  - CRMATH_2016__354_1_51_0
ER  - 
%0 Journal Article
%A Sagun Chanillo
%A Jean Van Schaftingen
%A Po-Lam Yung
%T Applications of Bourgain–Brézis inequalities to fluid mechanics and magnetism
%J Comptes Rendus. Mathématique
%D 2016
%P 51-55
%V 354
%N 1
%I Elsevier
%R 10.1016/j.crma.2015.10.005
%G en
%F CRMATH_2016__354_1_51_0
Sagun Chanillo; Jean Van Schaftingen; Po-Lam Yung. Applications of Bourgain–Brézis inequalities to fluid mechanics and magnetism. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 51-55. doi : 10.1016/j.crma.2015.10.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.005/

[1] M. Ben-Artzi Global solutions of two-dimensional Navier–Stokes and Euler equations, Arch. Ration. Mech. Anal., Volume 128 (1994) no. 4, pp. 329-358

[2] J. Bourgain; H. Brézis New estimates for the Laplacian, the div–curl, and related Hodge systems, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004) no. 7, pp. 539-543

[3] J. Bourgain; H. Brézis New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., Volume 9 (2007) no. 2, pp. 277-315

[4] H. Brézis Remarks on the preceding paper by M. Ben-Artzi: “Global solutions of two-dimensional Navier–Stokes and Euler equations”, Arch. Ration. Mech. Anal., Volume 128 (1994) no. 4, pp. 359-360

[5] S. Chanillo, J. Van Schaftingen, P.-L. Yung, Variations on a proof of a borderline Bourgain–Brézis Sobolev embedding theorem, to appear in Chin. Ann. Math. Ser. B.

[6] S. Chanillo; P.-L. Yung An improved Strichartz estimate for systems with divergence free data, Commun. Partial Differ. Equ., Volume 37 (2012) no. 2, pp. 225-233

[7] Y. Giga; T. Miyakawa; H. Osada Two-dimensional Navier–Stokes flow with measures as initial vorticity, Arch. Ration. Mech. Anal., Volume 104 (1988) no. 3, pp. 223-250

[8] T. Kato The Navier–Stokes equation for an incompressible fluid in R2 with a measure as the initial vorticity, Differ. Integral Equ., Volume 7 (1994) no. 3–4, pp. 949-966

[9] C.W. Oseen Über Wirbelbewegung in einer reibenden Flüssigheit, Ark. Mat. Astron. Fys., Volume 7 (1912), pp. 1-13

[10] J. Van Schaftingen Estimates for L1-vector fields, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004) no. 3, pp. 181-186

Cited by Sources:

S.C. was partially supported by NSF grant DMS 1201474. J.V.S. was partially supported by the Fonds de la recherche scientifique, FNRS grant J.044.13. P.-L.Y. was partially supported by a direct grant for research from the Chinese University of Hong Kong (4053120). We thank Haïm Brézis for several comments that improved the paper.

Comments - Policy