[Délocalisation des quasimodes sur le disque]
This note deals with semiclassical measures associated with (sufficiently accurate) quasimodes
Dans cette note, on s'intéresse aux mesures semiclassiques associées aux quasimodes (d'ordre suffisamment élevé)
Accepté le :
Publié le :
Nalini Anantharaman 1 ; Matthieu Léautaud 2 ; Fabricio Macià 3
@article{CRMATH_2016__354_3_257_0, author = {Nalini Anantharaman and Matthieu L\'eautaud and Fabricio Maci\`a}, title = {Delocalization of quasimodes on the disk}, journal = {Comptes Rendus. Math\'ematique}, pages = {257--263}, publisher = {Elsevier}, volume = {354}, number = {3}, year = {2016}, doi = {10.1016/j.crma.2015.10.016}, language = {en}, }
Nalini Anantharaman; Matthieu Léautaud; Fabricio Macià. Delocalization of quasimodes on the disk. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 257-263. doi : 10.1016/j.crma.2015.10.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.016/
[1] Semiclassical completely integrable systems: long-time dynamics and observability via two-microlocal Wigner measures, Amer. J. Math., Volume 137 (2015) no. 3, pp. 577-638
[2] Sharp polynomial decay rates for the damped wave equation on the torus, Anal. PDE, Volume 7 (2014) no. 1, pp. 159-214
[3] Wigner measures and observability for the Schrödinger equation on the disk, 2014 (submitted for publication) | arXiv
[4] Semiclassical measures for the Schrödinger equation on the torus, J. Eur. Math. Soc., Volume 16 (2014) no. 6, pp. 1253-1288
[5] Geometric control in the presence of a black box, J. Amer. Math. Soc., Volume 17 (2004) no. 2, pp. 443-471 (electronic)
[6] Control for Schrödinger operators on tori, Math. Res. Lett., Volume 19 (2012) no. 2, pp. 309-324
[7] Microlocal defect measures, Commun. Partial Differ. Equ., Volume 16 (1991) no. 11, pp. 1761-1794
[8] Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., Volume 71 (1993) no. 2, pp. 559-607
[9] Contrôle interne exact des vibrations d'une plaque rectangulaire, Port. Math., Volume 47 (1990) no. 4, pp. 423-429
[10] On the exact internal controllability of a Petrowsky system, J. Math. Pures Appl. (9), Volume 71 (1992) no. 4, pp. 331-342
[11] Contrôle de l'équation de Schrödinger, J. Math. Pures Appl. (9), Volume 71 (1992) no. 3, pp. 267-291
[12] Contrôle exact de l'équation de la chaleur, Commun. Partial Differ. Equ., Volume 20 (1995) no. 1–2, pp. 335-356
[13] High-frequency propagation for the Schrödinger equation on the torus, J. Funct. Anal., Volume 258 (2010) no. 3, pp. 933-955
[14] The Schrödinger flow in a compact manifold: high-frequency dynamics and dispersion, Modern Aspects of the Theory of Partial Differential Equations, Oper. Theory, Adv. Appl., vol. 216, Birkhäuser/Springer Basel AG, Basel, 2011, pp. 275-289
[15] Controllability cost of conservative systems: resolvent condition and transmutation, J. Funct. Anal., Volume 218 (2005) no. 2, pp. 425-444
[16] A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator, J. Funct. Anal., Volume 226 (2005) no. 1, pp. 193-229
Cité par Sources :
☆ NA and ML are partially supported by the Agence Nationale de la Recherche under grant GERASIC ANR-13-BS01-0007-01. FM is partially supported by grants MTM2013-41780-P (MEC) and ERC Starting Grant 277778.
Commentaires - Politique