Comptes Rendus
Partial differential equations
Global bifurcation of vortex and dipole solutions in Bose–Einstein condensates
Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 265-269.

We prove the existence of symmetric periodic solutions to

iut+Δu(x2+y2)u|u|2u=0.
As a corollary we obtain the existence of dipole solutions.

Dans cette note, nous prouvons l'existence de solutions périodiques symétriques de l'équation

iut+Δu(x2+y2)u|u|2u=0.
Comme corollaire, nous obtenons des solutions de type « dipôle ».

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.11.011

Andres Contreras 1; Carlos García-Azpeitia 2

1 Science Hall 224, New Mexico State University, Department of Mathematical Sciences, USA
2 Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México DF, Mexico
@article{CRMATH_2016__354_3_265_0,
     author = {Andres Contreras and Carlos Garc{\'\i}a-Azpeitia},
     title = {Global bifurcation of vortex and dipole solutions in {Bose{\textendash}Einstein} condensates},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {265--269},
     publisher = {Elsevier},
     volume = {354},
     number = {3},
     year = {2016},
     doi = {10.1016/j.crma.2015.11.011},
     language = {en},
}
TY  - JOUR
AU  - Andres Contreras
AU  - Carlos García-Azpeitia
TI  - Global bifurcation of vortex and dipole solutions in Bose–Einstein condensates
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 265
EP  - 269
VL  - 354
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2015.11.011
LA  - en
ID  - CRMATH_2016__354_3_265_0
ER  - 
%0 Journal Article
%A Andres Contreras
%A Carlos García-Azpeitia
%T Global bifurcation of vortex and dipole solutions in Bose–Einstein condensates
%J Comptes Rendus. Mathématique
%D 2016
%P 265-269
%V 354
%N 3
%I Elsevier
%R 10.1016/j.crma.2015.11.011
%G en
%F CRMATH_2016__354_3_265_0
Andres Contreras; Carlos García-Azpeitia. Global bifurcation of vortex and dipole solutions in Bose–Einstein condensates. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 265-269. doi : 10.1016/j.crma.2015.11.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.11.011/

[1] C. Cohen-Tannoudji; B. Diu; F. Laloe Quantum Mechanics, vol. 1, 1991

[2] M. Golubitsky; D. Schaeffer Singularities and Groups in Bifurcation Theory II, Appl. Math. Sci., vol. 51, Springer-Verlag, 1986

[3] Roy H. Goodman; P.G. Kevrekidis; R. Carretero-González Dynamics of vortex dipoles in anisotropic Bose–Einstein condensates, SIAM J. Appl. Dyn. Syst., Volume 14 (2015) no. 2, pp. 699-729

[4] J. Ize; A. Vignoli Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications, vol. 8, Walter de Gruyter, Berlin, 2003

[5] R.L. Jerrard; D. Smets Vortex dynamics for the two-dimensional non-homogeneous Gross–Pitaevskii equation, Ann. Sc. Norm. Super. Pisa, Volume 14 (2015) no. 3, pp. 729-766

[6] P. Kuopanportti; J.A.M. Huhtamäki; M. Möttönen Size and dynamics of vortex dipoles in dilute Bose–Einstein condensates, Phys. Rev. A, Volume 83 (2011) | DOI

[7] S. Middelkamp; P.J. Torres; P.G. Kevrekidis; D.J. Frantzeskakis; R. Carretero-González; P. Schmelcher; D.V. Freilich; D.S. Hall Guiding-center dynamics of vortex dipoles in Bose–Einstein condensates, Phys. Rev. A, Volume 84 (2011) | DOI

[8] M. Morrison The Joy of Quantum Physics, Oxford University Press, 2013

[9] M. Möttönen; S.M.M. Virtanen; T. Isoshima; M.M. Salomaa Stationary vortex clusters in nonrotating Bose–Einstein condensates, Phys. Rev. A, Volume 71 (2005) | DOI

[10] L. Nirenberg Topics in Nonlinear Functional Analysis, Courant Lecture Notes, 2001

[11] D. Pelinovsky; P. Kevrekidis Variational approximations of trapped vortices in the large-density limit, Nonlinearity, Volume 24 (2011), pp. 1271-1289

[12] D. Pelinovsky; P. Kevrekidis Bifurcations of asymmetric vortices in symmetric harmonic traps, Appl. Math. Res. Express, Volume 2013 (2013) no. 1, pp. 127-164

[13] P.H. Rabinowitz Some global results for nonlinear eigenvalue problems, J. Funct. Anal., Volume 7 (1971), pp. 487-513

[14] P.J. Torres; P.G. Kevrekidis; D.J. Frantzeskakis; R. Carretero-Gonzalez; P. Schmelcher; D.S. Hall Dynamics of vortex dipoles in confined Bose–Einstein condensates, Phys. Lett. A, Volume 375 (2011), pp. 3044-3050

Cited by Sources:

Comments - Policy