We prove the existence of symmetric periodic solutions to
Dans cette note, nous prouvons l'existence de solutions périodiques symétriques de l'équation
Accepted:
Published online:
Andres Contreras 1; Carlos García-Azpeitia 2
@article{CRMATH_2016__354_3_265_0, author = {Andres Contreras and Carlos Garc{\'\i}a-Azpeitia}, title = {Global bifurcation of vortex and dipole solutions in {Bose{\textendash}Einstein} condensates}, journal = {Comptes Rendus. Math\'ematique}, pages = {265--269}, publisher = {Elsevier}, volume = {354}, number = {3}, year = {2016}, doi = {10.1016/j.crma.2015.11.011}, language = {en}, }
TY - JOUR AU - Andres Contreras AU - Carlos García-Azpeitia TI - Global bifurcation of vortex and dipole solutions in Bose–Einstein condensates JO - Comptes Rendus. Mathématique PY - 2016 SP - 265 EP - 269 VL - 354 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2015.11.011 LA - en ID - CRMATH_2016__354_3_265_0 ER -
Andres Contreras; Carlos García-Azpeitia. Global bifurcation of vortex and dipole solutions in Bose–Einstein condensates. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 265-269. doi : 10.1016/j.crma.2015.11.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.11.011/
[1] Quantum Mechanics, vol. 1, 1991
[2] Singularities and Groups in Bifurcation Theory II, Appl. Math. Sci., vol. 51, Springer-Verlag, 1986
[3] Dynamics of vortex dipoles in anisotropic Bose–Einstein condensates, SIAM J. Appl. Dyn. Syst., Volume 14 (2015) no. 2, pp. 699-729
[4] Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications, vol. 8, Walter de Gruyter, Berlin, 2003
[5] Vortex dynamics for the two-dimensional non-homogeneous Gross–Pitaevskii equation, Ann. Sc. Norm. Super. Pisa, Volume 14 (2015) no. 3, pp. 729-766
[6] Size and dynamics of vortex dipoles in dilute Bose–Einstein condensates, Phys. Rev. A, Volume 83 (2011) | DOI
[7] Guiding-center dynamics of vortex dipoles in Bose–Einstein condensates, Phys. Rev. A, Volume 84 (2011) | DOI
[8] The Joy of Quantum Physics, Oxford University Press, 2013
[9] Stationary vortex clusters in nonrotating Bose–Einstein condensates, Phys. Rev. A, Volume 71 (2005) | DOI
[10] Topics in Nonlinear Functional Analysis, Courant Lecture Notes, 2001
[11] Variational approximations of trapped vortices in the large-density limit, Nonlinearity, Volume 24 (2011), pp. 1271-1289
[12] Bifurcations of asymmetric vortices in symmetric harmonic traps, Appl. Math. Res. Express, Volume 2013 (2013) no. 1, pp. 127-164
[13] Some global results for nonlinear eigenvalue problems, J. Funct. Anal., Volume 7 (1971), pp. 487-513
[14] Dynamics of vortex dipoles in confined Bose–Einstein condensates, Phys. Lett. A, Volume 375 (2011), pp. 3044-3050
Cited by Sources:
Comments - Policy