[Isolant photonique topologique d’Anderson dans un réseau atomique bidimensionnel]
Le désordre dans les positions atomiques peut induire une phase topologiquement non triviale – l’isolant topologique d’Anderson (TAI) - pour les quasi-modes optiques électriques transversaux d’un réseau en nid d’abeille bidimensionnel d’atomes immobiles. Le TAI nécessite que les symétries de renversement du temps et d’inversion soient brisées dans des proportions similaires. Il est caractérisé par un invariant topologique non nul, une densité d’états réduite et des quasi-modes spatialement localisés dans le volume, ainsi que des états de bord propagatifs. Une transition du TAI à la phase d’isolant topologique (TI) peut avoir lieu à une valeur constante de l’invariant topologique, montrant que le TAI et le TI représentent la même phase topologique.
Disorder in atomic positions can induce a topologically nontrivial phase—topological Anderson insulator (TAI)—for transverse electric optical quasimodes of a two-dimensional honeycomb lattice of immobile atoms. TAI requires both time-reversal and inversion symmetries to be broken to similar extents. It is characterized by a nonzero topological invariant, a reduced density of states and spatially localized quasimodes in the bulk, as well as propagating edge states. A transition from TAI to the topological insulator (TI) phase can take place at a constant value of the topological invariant, showing that TAI and TI represent the same topological phase.
Révisé le :
Accepté le :
Première publication :
Publié le :
Mot clés : photonique topologique, diffusion de la lumière par les atomes, désordre, isolant topologique d’Anderson, indice de Bott
Sergey E. Skipetrov 1 ; Pierre Wulles 1
@article{CRPHYS_2023__24_S3_39_0, author = {Sergey E. Skipetrov and Pierre Wulles}, title = {Photonic topological {Anderson} insulator in a two-dimensional atomic lattice}, journal = {Comptes Rendus. Physique}, pages = {39--54}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S3}, year = {2023}, doi = {10.5802/crphys.147}, language = {en}, }
TY - JOUR AU - Sergey E. Skipetrov AU - Pierre Wulles TI - Photonic topological Anderson insulator in a two-dimensional atomic lattice JO - Comptes Rendus. Physique PY - 2023 SP - 39 EP - 54 VL - 24 IS - S3 PB - Académie des sciences, Paris DO - 10.5802/crphys.147 LA - en ID - CRPHYS_2023__24_S3_39_0 ER -
Sergey E. Skipetrov; Pierre Wulles. Photonic topological Anderson insulator in a two-dimensional atomic lattice. Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 39-54. doi : 10.5802/crphys.147. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.147/
[1] Atom-Photon Interactions: Basic Processes and Applications, John Wiley & Sons, 1998 | DOI
[2] Advances in Atomic Physics: An Overview, World Scientific, 2011 | DOI
[3] Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys., Volume 74 (2002) no. 3, pp. 875-893 | DOI
[4] Direct observation of Anderson localization of matter waves in a controlled disorder, Nature, Volume 453 (2008) no. 7197, pp. 891-894 | DOI
[5] Three-dimensional localization of ultracold atoms in an optical disordered potential, Nature Phys., Volume 8 (2012) no. 5, pp. 398-403 | DOI
[6] Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008) no. 3, pp. 885-964 | DOI
[7] Topological bands for ultracold atoms, Rev. Mod. Phys., Volume 91 (2019) no. 1, 015005, 55 pages | DOI | MR
[8] Coherent Backscattering of Light by Cold Atoms, Phys. Rev. Lett., Volume 83 (1999) no. 25, pp. 5266-5269 | DOI
[9] Transmission of near-resonant light through a dense slab of cold atoms, Phys. Rev. A, Volume 96 (2017) no. 5, 053629, 11 pages | DOI
[10] Quantum multiple scattering, J. Mod. Opt., Volume 56 (2009) no. 18-19, pp. 2082-2088 | DOI | Zbl
[11] Absence of Anderson Localization of Light in a Random Ensemble of Point Scatterers, Phys. Rev. Lett., Volume 112 (2014) no. 2, 023905, 5 pages | DOI
[12] Longitudinal modes in diffusion and localization of light, Phys. Rev. B, Volume 103 (2021) no. 17, 174204, 26 pages | DOI
[13] New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Phys. Rev. Lett., Volume 45 (1980) no. 6, pp. 494-497 | DOI
[14] 40 years of the quantum Hall effect, Nat. Rev. Phys., Volume 2 (2020) no. 8, pp. 397-401 | DOI
[15] Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Phys. Rev. Lett., Volume 49 (1982) no. 6, pp. 405-408 | DOI
[16] Holonomy, the Quantum Adiabatic Theorem, and Berry’s Phase, Phys. Rev. Lett., Volume 51 (1983) no. 24, pp. 2167-2170 | DOI | MR
[17] Topological photonics, Nature Photon., Volume 8 (2014) no. 11, pp. 821-829 | DOI
[18] Topological photonics, Rev. Mod. Phys., Volume 91 (2019) no. 1, 015006, 76 pages | DOI | MR
[19] Topological origin of equatorial waves, Science, Volume 358 (2017) no. 6366, pp. 1075-1077 | DOI | MR | Zbl
[20] Topological Anderson Insulator, Phys. Rev. Lett., Volume 102 (2009) no. 13, 136806, 4 pages | DOI
[21] Topological Anderson insulator phenomena, Phys. Rev. B, Volume 84 (2011) no. 3, 035110, 9 pages | Zbl
[22] The topological Anderson insulator phase in the Kane-Mele model, Sci. Rep., Volume 6 (2016) no. 1, 24007 | DOI
[23] Topological Insulators in Amorphous Systems, Phys. Rev. Lett., Volume 118 (2017) no. 23, 236402, 6 pages | DOI
[24] Topological Insulators and Topological Superconductors, Princeton University Press, 2013 | DOI
[25] Disorder-Induced Topological State Transition in Photonic Metamaterials, Phys. Rev. Lett., Volume 119 (2017) no. 18, 183901, 5 pages | DOI
[26] Photonic topological Anderson insulators, Nature, Volume 560 (2018) no. 7719, pp. 461-465 | DOI
[27] Topological Anderson Insulator in Disordered Photonic Crystals, Phys. Rev. Lett., Volume 125 (2020) no. 13, 133603, 6 pages | DOI
[28] Photonic amorphous topological insulator, Light. Sci. Appl., Volume 9 (2020) no. 1, 133 | DOI
[29] Photonic Topological Anderson Insulators, Phys. Rev. Lett., Volume 129 (2022) no. 4, 043902, 7 pages | DOI | MR
[30] Topological Quantum Optics in Two-Dimensional Atomic Arrays, Phys. Rev. Lett., Volume 119 (2017) no. 2, 023603, 6 pages | DOI
[31] Topological transitions and Anderson localization of light in disordered atomic arrays, Phys. Rev. A, Volume 105 (2022) no. 4, 043514, 11 pages | DOI
[32] Photonic band gap in an imperfect atomic diamond lattice: Penetration depth and effects of finite size and vacancies, Phys. Rev. A, Volume 88 (2013) no. 3, 033844, 14 pages | DOI
[33] Localization of light in a three-dimensional disordered crystal of atoms, Phys. Rev. B, Volume 102 (2020) no. 13, 134206, 6 pages | DOI
[34] Symmetry and Topology in Non-Hermitian Physics, Phys. Rev. X, Volume 9 (2019) no. 4, 041015, 52 pages | DOI
[35] Long-range topological insulators and weakened bulk-boundary correspondence, New J. Phys., Volume 19 (2017) no. 10, 103030 | DOI
[36]
(in preparation)[37] Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances, J. Phys. Soc. Japan, Volume 74 (2005) no. 6, pp. 1674-1677 | DOI
[38] Topological properties of a dense atomic lattice gas, Phys. Rev. A, Volume 96 (2017) no. 4, 041603, 6 pages | DOI
[39] Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction, J. Phys. A, Math. Gen., Volume 17 (1984) no. 12, 2453 | MR | Zbl
[40] Topological insulators beyond the Brillouin zone via Chern parity, Phys. Rev. B, Volume 76 (2007) no. 16, 165307, 11 pages | DOI
[41] Entanglement Spectrum of a Disordered Topological Chern Insulator, Phys. Rev. Lett., Volume 105 (2010) no. 11, 115501, 4 pages | DOI
[42] Disordered topological insulators: a non-commutative geometry perspective, J. Phys. A, Math. Theor., Volume 44 (2011), 113001 | DOI | MR | Zbl
[43] Mapping topological order in coordinate space, Phys. Rev. B, Volume 84 (2011) no. 24, 241106, 4 pages | DOI
[44] Local invariants identify topology in metals and gapless systems, Phys. Rev. B, Volume 106 (2022) no. 6, 064109, 10 pages | DOI
[45] Disordered topological insulators via C*-algebras, Eur. Phys. Lett., Volume 92 (2010) no. 6, 67004 | DOI
[46] Topological Photonic Quasicrystals: Fractal Topological Spectrum and Protected Transport, Phys. Rev. X, Volume 6 (2016) no. 1, 011016, 12 pages | Zbl
[47] Photonic topological insulator in synthetic dimensions, Nature, Volume 567 (2019) no. 7748, pp. 356-360 | DOI
[48] Non-Hermitian Topological Invariants in Real Space, Phys. Rev. Lett., Volume 123 (2019) no. 24, 246801, 8 pages | DOI | MR
[49] Topological phases in non-Hermitian Aubry-André-Harper models, Phys. Rev. B, Volume 101 (2020) no. 2, 020201, 6 pages | DOI
[50] Topological Anderson insulators in two-dimensional non-Hermitian disordered systems, Phys. Rev. A, Volume 101 (2020) no. 6, 063612, 8 pages | DOI | MR
[51] On the Bott index of unitary matrices on a finite torus, Lett. Math. Phys., Volume 112 (2022) no. 6, 126 | DOI | MR | Zbl
[52] Three-dimensional phase diagram of disordered HgTe/CdTe quantum spin-Hall wells, Phys. Rev. B, Volume 83 (2011) no. 19, 195119, 8 pages | DOI
[53] Criticality of the metal–topological insulator transition driven by disorder, Phys. Rev. B, Volume 87 (2013) no. 20, 205141, 11 pages | DOI | Zbl
[54] Theory of the Topological Anderson Insulator, Phys. Rev. Lett., Volume 103 (2009) no. 19, 196805, 4 pages | DOI
[55] The noncommutative geometry of the quantum Hall effect, J. Math. Phys., Volume 35 (1994) no. 10, pp. 5373-5451 | DOI | MR | Zbl
[56] Spatial and temporal localization of light in two dimensions, Phys. Rev. A, Volume 92 (2015) no. 6, 062702, 7 pages | DOI
[57] Multi-component quantum gases in spin-dependent hexagonal lattices, Nature Phys., Volume 7 (2011) no. 5, pp. 434-440 | DOI
[58] Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature, Volume 483 (2012) no. 7389, pp. 302-305 | DOI
[59] Dynamic Optical Lattices of Subwavelength Spacing for Ultracold Atoms, Phys. Rev. Lett., Volume 115 (2015) no. 14, 140401, 5 pages | DOI
[60] Realization of a deeply subwavelength adiabatic optical lattice, Phys. Rev. Research, Volume 2 (2020) no. 1, 013149, 7 pages | DOI
[61] Long-Range Interacting Many-Body Systems with Alkaline-Earth-Metal Atoms, Phys. Rev. Lett., Volume 110 (2013) no. 14, 143602, 5 pages | DOI | Zbl
[62] Observation of unidirectional backscattering-immune topological electromagnetic states, Nature, Volume 461 (2009) no. 7265, pp. 772-775 | DOI
[63] Topologically protected photonic modes in composite quantum Hall/quantum spin Hall waveguides, Phys. Rev. B, Volume 100 (2019) no. 8, 085118, 7 pages | DOI
[64] Microwave applications of photonic topological insulators, Appl. Phys. Lett., Volume 116 (2020) no. 25, 250502 | DOI
[65] Microwave resonator lattices for topological photonics (invited), Opt. Mater. Express, Volume 11 (2021) no. 3, pp. 629-653 | DOI
Cité par Sources :
Commentaires - Politique