Comptes Rendus
Probability theory/Statistics
On the distribution of the product of correlated normal random variables
Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 201-204.

We solve a problem that has remained unsolved since 1936 – the exact distribution of the product of two correlated normal random variables. As a by-product, we derive the exact distribution of the mean of the product of correlated normal random variables.

Dans cette Note, on résout un problème, posé depuis 1936, sur la distribution exacte du produit de variables aléatoires normales corrélées. Comme résultat supplémentaire, on déduit la distribution exacte de la moyenne du produit de variables aléatoires normales corrélées.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.10.019

Saralees Nadarajah 1; Tibor K. Pogány 2

1 School of Mathematics, University of Manchester, Manchester M13 9PL, UK
2 Faculty of Maritime Studies, University of Rijeka, 51000 Rijeka, Croatia
@article{CRMATH_2016__354_2_201_0,
     author = {Saralees Nadarajah and Tibor K. Pog\'any},
     title = {On the distribution of the product of correlated normal random variables},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {201--204},
     publisher = {Elsevier},
     volume = {354},
     number = {2},
     year = {2016},
     doi = {10.1016/j.crma.2015.10.019},
     language = {en},
}
TY  - JOUR
AU  - Saralees Nadarajah
AU  - Tibor K. Pogány
TI  - On the distribution of the product of correlated normal random variables
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 201
EP  - 204
VL  - 354
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2015.10.019
LA  - en
ID  - CRMATH_2016__354_2_201_0
ER  - 
%0 Journal Article
%A Saralees Nadarajah
%A Tibor K. Pogány
%T On the distribution of the product of correlated normal random variables
%J Comptes Rendus. Mathématique
%D 2016
%P 201-204
%V 354
%N 2
%I Elsevier
%R 10.1016/j.crma.2015.10.019
%G en
%F CRMATH_2016__354_2_201_0
Saralees Nadarajah; Tibor K. Pogány. On the distribution of the product of correlated normal random variables. Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 201-204. doi : 10.1016/j.crma.2015.10.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.019/

[1] L.A. Aroian The probability function of the product of two normally distributed variables, Ann. Math. Stat., Volume 18 (1944), pp. 265-271

[2] L.A. Aroian; V.S. Taneja; L.W. Cornwell Mathematical forms of the distribution of the product of two normal variables, Commun. Stat., Theory Methods, Volume 7 (1978), pp. 165-172

[3] M.M. Bandi; C. Connaughton Craig's XY distribution and the statistics of Lagrangian power in two-dimensional turbulence, Phys. Rev. E, Volume 77 (2008)

[4] C.C. Craig On the frequency function of xy, Ann. Math. Stat., Volume 7 (1936), pp. 1-15

[5] I.S. Gradshteyn; I.M. Ryzhik Table of Integrals, Series, and Products, Academic Press, San Diego, CA, USA, 2000

[6] J.B.S. Haldane Moments of the distributions of powers and products of normal variates, Biometrika, Volume 32 (1942), pp. 226-242

[7] J.C. Hayya; W.L. Ferrara On normal approximations of the frequency functions of standard forms where the main variables are normally distributed, Manag. Sci., Volume 19 (1972), pp. 173-186

[8] D. MacKinnon Introduction to Statistical Mediation Analysis, Routledge, New York, 2012

[9] D.P. MacKinnon; M.S. Fritz; J. Williams; C.M. Lockwood Distribution of the product confidence limits for the indirect effect: program PRODCLIN, Behav. Res. Methods, Volume 39 (2007), pp. 384-389

[10] W.Q. Meeker; R.D. Odeh; L.W. Cornwell; L.A. Aroian; W.J. Kennedy Selected Tables in Mathematical Statistics: The Product of Two Normally Distributed Random Variables, American Mathematical Society, Providence, RI, USA, 1981

[11] R. Ware; F. Lad Approximating the distribution for sums of products of normal variables, Department of Mathematics and Statistics, University of Canterbury, New Zealand, 2013 (Working paper)

Cited by Sources:

Comments - Policy