In this paper we will first give a positive answer to Kaiser's conjecture on ε-positive centers for convex curves and then present its two applications.
Dans cette Note, nous apportons une réponse positive à la conjecture de Kaiser sur les centres ε-positifs des courbes convexes, puis nous en présentons deux applications.
Accepted:
Published online:
Shengliang Pan 1; Yunlong Yang 1; Pingliang Huang 2
@article{CRMATH_2016__354_2_195_0, author = {Shengliang Pan and Yunlong Yang and Pingliang Huang}, title = {The \protect\emph{\ensuremath{\varepsilon}}-positive center set and its applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {195--200}, publisher = {Elsevier}, volume = {354}, number = {2}, year = {2016}, doi = {10.1016/j.crma.2015.10.021}, language = {en}, }
Shengliang Pan; Yunlong Yang; Pingliang Huang. The ε-positive center set and its applications. Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 195-200. doi : 10.1016/j.crma.2015.10.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.021/
[1] Les Problèmes des Isopérimètres et des Isépiphanes, Gauthier-Villars, Paris, 1929
[2] The log-Brunn–Minkowski inequality, Adv. Math., Volume 231 (2012), pp. 1974-1997
[3] Geometric Inequalities, Springer-Verlag, Berlin, 1988
[4] An isoperimetric inequality with applications to curve shortening, Duke Math. J., Volume 50 (1983), pp. 1225-1229
[5] Curve shortening makes convex curves circular, Invent. Math., Volume 76 (1984), pp. 357-364
[6] Positive centers and the Bonnesen inequality, Proc. Amer. Math. Soc., Volume 110 (1990), pp. 1041-1048
[7] The heat equation shrinking convex plane curves, J. Differ. Geom., Volume 23 (1986), pp. 69-96
[8] Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves, Asian J. Math., Volume 3 (1999), pp. 659-676
[9] On the location of roots of Steiner polynomials, Bull. Braz. Math. Soc., Volume 42 (2011), pp. 153-170
[10] Positive center sets of convex curves, Discrete Comput. Geom., Volume 54 (2015), pp. 728-740
[11] Bounds on the roots of the Steiner polynomial, Adv. Geom., Volume 11 (2011), pp. 313-317
[12] The ε-positive center figure, Appl. Math. Lett., Volume 9 (1996), pp. 67-70
[13] Bonnesen-style isoperimetric inequalities, Amer. Math. Mon., Volume 86 (1979), pp. 1-29
[14] Integral Geometry and Geometric Probability, Cambridge University Press, Cambridge, 2004
[15] Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia of Mathematics and Its Applications, vol. 44, Cambridge University Press, Cambridge, 1993
Cited by Sources:
☆ This work is supported by the National Science Foundation of China (No. 11171254) and a grant of “The First-class Discipline of Universities in Shanghai”.
Comments - Policy